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Executive Summary 
 

D2.6 aimed at making the traits collected in phenotyping platforms useful for plant 
scientists and breeders interested in the analysis of field datasets. This is, in particular, the 
prediction and understanding of genotypic main effects (G) for yield in series of field trials, i.e., 
average genotypic performance, as well as of genotype by environment interactions (G×E), 
i.e., differential genotypic performance. Phrased in this way, one possible way forward is to 
enrich existing models for G and G×E by incorporating features related to information obtained 
on phenotyping platforms. There are two main ways of doing this, factorial regression and 
multi-trait models. For factorial regression, we include platform phenotyping features, i.e., 
secondary phenotypes as genotypic covariables in models describing yield in series of field 
experiments. This means that we try to understand G and G×E as a function of genotypic 
covariables coming from phenotyping platforms. This approach, which we call factorial 
regression, was followed, and further developed on field trial data collected in the EU-DROPS 
project and is reported in Millet et al. (2019). In addition to the incorporation of genotypic 
covariables into models for yield in series of trials, we can also try to include environmental 
covariables, which can be both groupings like environmental scenarios and continuous 
environmental indices. The joint use of genotypic and environmental covariables provides a 
strong approach for data integration between phenotyping platform data and field trials. The 
success of this approach depends critically on a good preselection of genotypic and 
environmental covariables based on physiological insights prior to building a model for yield in 
the field. Without such a preselection, too many possible models need to be evaluated and the 
chances of finding a successful model for prediction of yield under G×E are small.  

Factorial regression models with genotypic covariables stemming from phenotyping 
platforms and environmental covariables stemming from environmental characterisations and 
indices are best embedded in the class of mixed models with appropriate modelling of 
background genetic and non-genetic variances and correlations. In addition to genotypic 
covariables representing platform features, factorial regression models for yield in the field will 
also contain molecular marker information turning these factorial regression models into 
genomic prediction models with features for G×E. In recent years, several mixed model and 
empirical Bayes models have been proposed that integrate 1) marker information, 2) 
secondary phenotyping information, which can include various types of omics data, and 3) 
environmental information. Many of these proposals are presented as so-called multi-kernel 
methods. However, in essence these multi-kernel models follow the same structure and logic 
as the factorial regression models containing genotypic and environmental covariables, except 
that in multi-kernel methods less attention is given to covariable selection and more attention 
to the incorporation of high dimensional information. We compared a multi-kernel approach at 
data integration with a factorial regression approach for the maize data of the EU-DROPS 
project. Results were published in Millet et al. (2019). 

The main alternative to factorial regression / multi-kernel methods are multi-trait models, 
models in which multiple responses simultaneously are modelled as opposed to the factorial 
regression models above that usually contain a single response, mostly yield. In a multi-trait 
model, yield is modelled as a response together with secondary phenotypes. For data 
integration, it is crucial that marker information can be inserted into the prediction models. A 
few multi-trait prediction methods have been proposed and these are evaluated in Arouisse et 
al. (2021) for real and simulated data sets. The same paper also proposes some promising 
new techniques.  

A major work underlying deliverable D2.6 is the broad overview of data integration 
approaches in the context of the use of platform traits for modelling G×E in yield published by 
van Eeuwijk et al. (2019).  
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1. The role of research activities on statistical design and 
analysis within EPPN2020  

 
EPPN2020 helps the plant community in progressing towards excellence across the whole 
phenotyping pipeline and addresses in the Joint Research Action 2, the following statistical 
issues:  

- adequate experimental designs for phenotyping experiments 
- analysis of single and multiple experiments with adjustment of treatment contrasts for 

environmental conditions, disturbances, and noise patterns at different spatial and 
temporal resolutions  

- identification of outlying observations from sensor and imaging outputs 
- extraction of secondary phenotypic traits on collections of genotypes 
- choosing statistical models with an eye on biological interpretation of statistical 

parameters  
- analysis of series of experiments as well as meta-analyses of experiments, with an 

emphasis on data integration between platform and field experiments 
 
This document is dedicated to the last bullet point in the list above. In full: D2.6 Integration 
procedures and software for data from multiple platform and field experiments, with different 
but overlapping sets of genotypes, across scales of plant organization, traits and management 
conditions. The work on D2.6 is an extension of work on D2.3: Statistical methods and software 
for analysis of single and multiple platform experiments. D2.3 focussed on relations within and 
between platform experiments. D2.6 looks at the integration of phenotypic information obtained 
in field and platform experiments. For D2.6, the main objective is to incorporate secondary 
phenotypes as collected on one or more phenotyping platforms in models for primary 
phenotypes as collected in field experiments. In practice, the objective of D2.6 can be 
translated into the development of statistical models for further analysis of genotypic main 
effects and genotype by environment interactions for yield as occurring in field experiments by 
incorporating secondary phenotypes measured on phenotyping platforms into these models.  
 

2. Two approaches underlying data integration  
 
In EPPN2020, phenotyping platforms were used to characterize collections of genotypes. A 
major research objective was to use this information to understand yield and  other traits in the 
field for the same genotypes. We give here a non-technical description of two major classes 
of data integration methods that were found useful in EPPN2020. Technical details and further 
options for data integration are given in van Eeuwijk et al. (2019). 
 

2.1. Factorial regression models 

 
From the perspective of EPPN2020, a plausible integration of platform and field data is to 
transform platform data into genotypic covariables that can explain (describe) average 
performance of genotypes across trials as well as differential genotypic performance, i.e., 
genotype by environment interaction. For a series of field trials, we can define a statistical 
model as y = E + G + G×E + error, with y the response, E the environmental main effect (~trial 
mean), G the genotypic main effect (average performance of genotype), G×E the genotype by 
environment interaction (differences between genotypes that depend on the environment / trial 
conditions). A simple but powerful data integration strategy is to write G and G×E as functions 
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of genotypic covariables. A genotypic characterization as measured on the platform is used to 
explain average differences in yield between genotypes in the field, while the same or another 
platform characterization is used to describe how environmental conditions change the 
performance of genotypes with respect to each other. The class of statistical models that 
inserts genotypic covariables on G and G×E is called factorial regression models. When we 
insert a genotypic covariable for G, we partition the genetic variation into a part explained by a 
regression on the genotypic covariable and a residual: G = slope * genotypic covariable + 
residual G. For the G×E, we estimate a separate parameter or slope for each environment or 
trial: G×E = environment dependent slope * genotypic covariable + residual G×E. Factorial 
regression models can also include environmental covariables that can be constructed as 
environmental groupings and indices. These environmental covariables partition the average 
differences between trials and the G×E. Groupings of trials can be obtained from statistically 
clustering trials with similar conditions. The outcome of such a clustering operation are 
environmental scenarios, environmental types or adaptation zones. These groupings can be 
based on observed soil and meteorological conditions, but also on outputs of crop growth 
model simulations that provide synthetic environmental information. In Millet et al. (2019) that 
was written partly as a case study on data integration between field and phenotyping platforms, 
various types of genotypic and environmental covariables were used. This case study will be 
illustrated below.  
 

2.2. Multi-trait models 

 
An area with major activity in data integration between field and platform data is genomic 
prediction. Genomic prediction aims at predicting phenotypes from marker profiles. A set of 
genotypes that has both marker and phenotypic data is used to train a prediction model, i.e., 
parameters are estimated for the prediction model. The estimated prediction model is then 
applied to a set of genotypes for which only marker data are available, the test set. The hope 
is that a genomic prediction model allows the evaluation of large numbers of genotypes for one 
or more phenotypic traits and/or environments at low costs, i.e., only genetic data are required 
and no phenotypic evaluations. Various criteria have been defined to assess the quality of the 
predictions by genomic prediction models. Commonly a cross validation strategy is used where 
a so-called calibration set of genotypes with both markers and phenotypes is split into a training 
set and a validation set. The prediction model is estimated on the training set and evaluated 
by predicting the phenotypes for the hold out validation set. Because we have observed 
phenotypes for the hold out validation set, we can correlate the predicted phenotypes with the 
observed phenotypes. This correlation is often called prediction accuracy. Of course, the 
prediction accuracy that was estimated on the validation set is usually an underestimate of the 
accuracy that will be realized on an independent test set. 
 
In the genomic prediction literature, the paper by Burgueño et al. (2012) is an essential paper 
describing how marker data can help to predict G×E within a mixed model framework. This 
framework for predicting yield in multiple environments can be generalized to genomic 
prediction of multiple traits, i.e., yield and secondary traits. Burgueño et al. distinguish two 
situations for prediction. Translated to our case, the first situation has all traits, yield and 
secondary traits, measured on the training set and not at all at the test set. For this prediction 
scenario, called CV1 (from cross validation), we want to predict responses for new genotypes, 
and we have marker data and trait observations for the training set, whereas for the test set 
we only have marker data. An alternative prediction scenario, CV2, has marker data and 
secondary phenotyping data for both training and test set, while yield is only observed for the 
training set. The purpose of this prediction scenario is to predict yield for the test set, while the 
prediction model can use marker and secondary trait information on all genotypes and yield 
for the genotypes in the training set.  
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Fig.1 Schematic representation of the two cross-validation schemes. 

 
For the purposes of EPPN2020, we consider CV2 to be of less importance than CV1. Most of 
the platforms in EPPN2020 aim at thorough physiological characterization of genotypes that are 
evaluated both at the platform and in the field. It would be interesting when secondary 
phenotyping on platforms could serve prediction purposes for yield in future fields alongside 
marker information for new sets of genotypes. This question, starting from a multi-trait 
prediction model, was investigated in Arouisse et al. (2021), among other methodological 
questions about the use of secondary phenotype information in genomic prediction. In the next 
section, we will elaborate a case study to illustrate how secondary phenotyping information 
can add predictive power to marker information in genomic prediction.  
 
In standard multi-trait mixed models, all traits contribute to the prediction of one or more focal 
or target responses, for example, yield. One can think of these prediction models as 
regressions in which the weights or slopes for the predictive traits are functions of genetic 
correlations between target trait and predictive traits as well as of the heritabilities of target and 
predictive traits. When the target trait is average performance in the field or sensitivity to 
drought stress in the field and the predictive traits are all measured at one or more platforms, 
the multi-trait mixed model is equivalent to the application of so-called index selection (Lynch 
and Walsh, 1998). A predictive function of platform traits is constructed in such a way that its 
genetic correlation with the target trait is maximal. One may want to use the predicted values 
from the selection index as selection criterion in place of the target trait itself. This is attractive 
when the product of the heritability of the selection index and the squared genetic correlation 
between index and target trait is larger than the heritability of the target trait, yield in the field. 
The prediction model underlying the selection index can be improved by also using marker 
information. An interesting approach to arrive at an index in which the set of secondary 
phenotypes was tried to be reduced by an automatic variable selection implemented in a 
penalized regression (Lasso) was described in Lopez-Cruz et al. (2020). In Arouisse et al. 
(2021), we evaluated this penalized index and compared it with other proposals for combining 
marker data with secondary phenotypes for prediction.  
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3. Illustration of data integration approaches 
 

3.1. Factorial regression (Millet et al. 2019) 

 
In Millet et al. (2019), we used a data integration technique for combining field and platform 
data that is strongly based on factorial regression. The idea here was to use marker and 
platform data on a maize panel to predict field performance with attention for G×E. Platform 
data were used to estimate timing of genotype specific phenologies. In maize, the progression 
of phenological stages closely follows thermal time, with a nearly constant leaf appearance 
rate. Thermal time based on meristem temperature can be used to calculate leaf stages on 
platform and in the field, provided that the leaf emission rates are the same. Leaf stages 
correspond to developmental stages of the ear and can be used to define phenological periods. 
So, measuring leaf appearance at the platform allows to define the length of phenological 
stages in the field and to calculate the environmental conditions working at a particular 
genotype in a field experiment. In that way, environmental covariables can be calculated that 
are genotype and environment specific. With respect to those covariables, genotypic 
sensitivities are estimated. For the maize panel, three environmental covariables could be 
identified that explained a substantial part of the G×E in grain number. The identification of 
these covariables was facilitated by physiological insights that prioritized certain combinations 
of covariables for inclusion in the factorial regression model. As yield is grain number × grain 
weight, and no G×E occurred for grain weight in the maize field experiments studied in Millet 
et al. (2019), we could describe G×E in yield from G×E in grain number. The average genotypic 
performance and the genotypic sensitivities that drove G×E for grain number could 
successfully be predicted from marker profiles in a simple genomic prediction model. So, G×E 
for yield in the field could be predicted from marker data and environmental covariables by 
using a factorial regression model. The platform served to estimate the length of genotype 
specific phenological stages and to calculate environmental characterizations. The quality of 
the prediction model was evaluated on multiple test sets and compared to a benchmark mixed 
model that predicts genotypes for specific conditions from random genotype by environment 
effects that were structured by markers at the genotypic side and environmental similarities 
calculated from all environmental covariables at the environmental side (Jarquin et al., 2014). 
The performance of the factorial regression model with genotypic parameters (average 
performance and sensitivities) predicted from marker profiles was good and surely competitive 
in comparison to the benchmark model. An impression of the model structure and the 
predictive performance is given in Figure 4 of Millet et al. (2019) that is included below. 
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3.2. Multi-trait prediction (Arouisse et al., 2021) 

 
In Arouisse et al. (2021) we wanted to know whether sets of secondary phenotypes are useful 
for a better prediction of yield in the field, when the secondary phenotypes are added to a set 
of markers. In other words, would additional secondary phenotypic predictors add anything to 
the predictive accuracy of common genomic prediction models like GBLUP? A few solutions 
have been offered for this problem. The simplest solution is to do a multi-trait GBLUP, but this 
solution only works for a limited number of secondary traits, while increasingly so high 
dimensional secondary traits are collected. A popular approach is the use of multi-kernel 
methods. Multi-kernel methods, or multi-BLUPs, are straightforward extensions of GBLUP, 
where in addition to a genetic random effect, a second random effect in inserted in the 
prediction model that reflects the secondary phenotypes. The genetic random effect is 
structured by marker-based relations between genotypes, while the additional random effect 
is structured by relationships between genotypes that are calculated from secondary 
phenotypes. Each structured random effect represents a kernel. An early example of this 
approach can be found in Riedelsheimer et al. (2012). Another type of solution reduces the 
dimensionality of the secondary traits by transforming them into a selection index (Lynch and 
Walsh, 1998) that maximizes the genetic correlation between a linear combination of the 
secondary traits and the target trait. An interesting twist to the selection index approach was 
proposed by Lopez Cruz et al. (2020). These authors introduced a penalized version of the 
selection index that aims to reduce the dimensionality of the set of secondary traits. 
 
Arouisse et al. (2021) evaluated all the above methods for integrating secondary traits into 
genomic prediction models on various real and simulated data sets. They introduced firstly a 
dimension reduction of the secondary trait set by applying a penalized regression (Lasso) of 
target trait on secondary traits or a random forest regression and then inserted the predictions 
of those regressions in a bivariate GBLUP together with the target trait. The new methods were 
called LS-BLUP and RF-BLUP, respectively. Secondly, they adapted the multi-kernel model. 
In place of a random effect structured by secondary traits, they introduced a random effect 
structured by the genomic predictions of the secondary traits, that is, they performed GBLUP 
of secondary traits on markers and used the predictions of those GBLUPs to structure the 
additional random effect. The advantage of the latter approach, called GM-BLUP) is that it can 
also be used when the secondary traits haven’t been measured on the test set. 
 
The results of the application of different prediction models integrating markers and secondary 
phenotypes on some real data sets are presented in Tables 1 and 2 of Arouisse et al. (2021) 
and repeated on the next page. The overall conclusion was that none of the methods that 
added secondary phenotypes to markers did better than GBLUP for the situation that 
secondary phenotypes were not measured at the test set (CV1). However, LS-BLUP and RF-
BLUP did better than GBLUP and also better than other prediction models for the situation in 
which secondary phenotypes were measured on both training and test set.   
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4. Conclusion 
 

Work on data integration within the EPPN2020 Joint Research Action 2 has produced three 
papers proposing, describing and comparing different statistical procedures. The paper by van 
Eeuwijk et al. (2019) gives a broad overview of how secondary phenotyping information can 
be used to improve both models that aim at a better understanding of G×E in the field as well 
as models that aim principally at a better prediction of G×E. The paper by Millet et al. (2019) 
contains a good example of how a factorial regression model together with platform information 
can provide insight and predictive power for G×E in the field. In contrast, the paper by Arouisse 
et al. (2021) emphasizes the potential improvement of prediction accuracy by using secondary 
phenotypes alongside markers in generalizations of common genomic prediction models. 
Software for all the methods is available as additional material to the papers. It concerns 
programs and procedures in R and Python, with sometimes a reliance on ASReml. 
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