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Executive Summary 
 
Objectives  
 
The objectives of D1.3 are: 
 

o to investigate and report on the potential of active imaging strategies to improve the 
data obtained from image-based plant phenotyping methods 

o to present the results of proof of concept studies of dynamic phenotyping methods 
conducted within the consortium 

o to propose methodologies for generalising these studies and identifying control 
strategies suitable for different types of high-throughput phenotyping installations. 

 
Rationale: To date, work on high-throughput, image-based phenotyping has focussed on 
automation, the plants under investigation being brought before a camera, or cameras, by an 
automatic conveyor, images are captured, analysed and traits extracted. The same process is 
applied to each plant and image acquisition and analysis are independent: images are 
acquired from fixed camera locations and passed through a pre-determined analysis pipeline. 
That pipeline has no ability to control or influence the image acquisition process. 
 
While this ‘one size fits all’ approach can be effective, it has limitations. Plants are complex 
and highly variable objects, and fixed camera systems cannot be relied upon to provide the 
most appropriate images in all situations. Dynamic phenotyping approaches owe more to 
robotics than automation. Here, image acquisition and analysis are integrated. Fixed cameras 
provide an initial survey and description of the plant, after which they or other cameras are 
automatically placed to acquire the images needed to perform the task at hand.  
The hypotheses underlying this deliverable are that: 

i. the core technologies of robotics and plant image analysis are now sufficiently well-
developed as to allow widespread use of dynamic phenotyping methods 

ii. the dynamic phenotyping approach has the potential to produce more accurate and 
consistent phenomic data than existing automated methods. 

 
Main Results: This document first presents the case for dynamic phenotyping based on 
robotics as an alternative to existing methods based upon longer-established automation 
technologies. Section 1 outlines the background to the study and the hypotheses underlying 
the work done. 
For a camera to be automatically positioned relative to a plant, the 3D position and orientation 
of the camera must be known and relatable to some plant feature(s). This can be achieved in 
two ways, either: 

i. a complete 3D model of the plant can be recovered and related to the 3D position 
of the camera or  

ii. biological knowledge can be embedded in image analysis methods which identify 
and recover the 3D position of only selected features of particular scientific interest. 

 
Section 2 outlines work done on improved, high-resolution recovery of complete 3D plant 
models from multiple camera views, and on active 3D reconstruction. Two groups have taken 
complimentary approaches. DLO has developed a facility which produces a high-quality 
volumetric model of the viewed plant. This is effectively a 3D image: the space containing the 
plant is represented as a 3D grid of “voxels”, with each being labelled as containing, or not 
containing, plant material. UNOTT also employs a volumetric model, but of lower quality, using 
it not to represent the plant but only to drive the camera. The images obtained are then 
combined to produce a surface-based representation of the plant. These activities are currently 
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being integrated, with the ability of the volumetric models produced in the Netherlands to better 
support active camera placement in Nottingham the focus of the work. 
 
Section 3 outlines work done at INRAE on camera placement for maize silk analysis without 
access to a complete 3D model of the plant. Here multiple cameras are employed and 
calibrated using a technique related to that described in D1_1. Independent analysis of key 
views allows other cameras to be selected/rejected for use when examining the plant at hand 
and a separate x-y-z controllable camera to be placed to acquire a final image in which small, 
but biologically important features of the plant are clearly visible. This approach is currently 
being modified to a grape phenotyping task at INRAE, while a similarly structured approach is 
being taken to phenotyping aeroponically grown root architectures at UCL. Protocols and code 
for the INRAE maize system are already available. These represent the beginning of a library 
of scripts which will be extended in the final stages of EPPN2020. 
 
Because they are front-of-science and need to be developed in day-to-day collaboration with 
scientists involved in their application, the activities described above have been carried out 
separately, but with frequent exchange, in different nodes of the consortium. In the final year 
of EPPN2020, the data and techniques produced will be brought together, transformed into 
software elements made available to and tested by the consortium of EPPN2020. Some 
elements are already available to the whole phenotyping community via public repositories. 
This will be the case at the end of the project for all other applications presented here. 
 
 
 
 
Authors/Teams involved: Tony Pridmore (UNOTT), Llorenç Cabrera-Bosquet (INRAE), 
Franck Golbach (DLO), Xavier Draye (UCL). 
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1. INTRODUCTION 

The goal of high-throughput plant phenotyping is to provide accurate, objective measurements 
of the structure and/or function of large numbers of plants as efficiently as possible. This 
objective is at best difficult and often impossible to achieve using manual measurement tools 
or methods requiring high degrees of operator intervention. Automation is the key, and current 
large facilities are built upon concepts developed in automated manufacturing. Plants are often 
maintained on conveyors, travelling from one workstation to another as they undergo a series 
of fixed processes; RGB imaging, fluorescence imaging, laser scanning, etc. As in automated 
manufacturing, each process is clearly defined and all plants receive the same treatment.  

In the standard phenotyping pipeline, characterised in Figure 1, the plant is placed in the field 
of view of some imaging device or sensor, raw data is acquired and analysed to provide trait 
data which is inserted in an appropriate information system. Here, image acquisition and 
analysis are independent. The analysis performed is tuned to the broad class of images that 
are expected, e.g. side views of a plant of an approximately known size against a known 
background, but not to the particular plant in view. This ‘one size fits all’ approach can clearly 
be effective, but it assumes a degree of uniformity in the objects considered - plants – which 
may not be present. 

 

Figure 1. Overview of a standard plant phenotyping pipeline. 

Dynamic phenotyping methods differ in that they seek to adapt the sensing strategy to the 
plant at hand. Rather than take images from the same set of viewpoints, regardless of the size, 
shape and complexity of the object presented to them, they seek to acquire the images needed 
and ideally best suited to support those measurements. To achieve this requires a step away 
from automation and towards robotics; the key distinction being that while automated systems 
repeat the same operation multiple times, robotic systems sense their environment and take 
images accordingly. Figure 2. characterises a typical dynamic phenotyping pipeline. 

 

Figure 2. Dynamic plant phenotyping. 
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Here, image acquisition and analysis are integrated, in that a feedback loop exists between 
them. The process generally begins with an initial image, or set of images, gathered in the 
same way for each plant. These are not, however, the images used in the final analysis. 
Information recovered from the initial images is used to decide where camera(s) should be 
placed to best make the desired measurements. Further images are then acquired from those 
locations, analysed and, if necessary, the process repeated until sufficient images of sufficient 
quality are available to allow the desired traits to be recovered. 

The dynamic phenotyping approach has the potential to: 

- Reduce variations in trait values due to the (often arbitrary) positioning of the plant in 
front of the camera, leading to more robust and repeatable phenotyping 
 

- Support more detailed analyses. The initial camera locations are often arranged to 
capture the whole plant, providing an overview image at comparatively low-resolution. 
These can then be used to move cameras closer to the plant to acquire higher-
resolution images of smaller sections, perhaps individual organs. Data obtained from 
these close-up images is likely to be more fine-grained and accurate than that obtained 
from the more distant whole-plant views.  
 

- Support multi-scale phenotyping. The dynamic approach offers the possibility of linking 
data obtained from whole-plant and selected close-up views to produce a richer 
representation in which detailed measurements of e.g. individual leaves are placed in 
the context of the surrounding plant architecture. 

To obtain these benefits, however, the 3D position and orientation of the camera must be 
known and relatable to some plant feature(s). This can be achieved in two ways, either: 

 
i. an explicit 3D model of the plant must be recovered and related to the 3D position 

of the camera or  
ii. biological knowledge can be embedded in image analysis methods which identify 

and recover the 3D position of only selected features of particular scientific interest. 

The work carried out in EPPN2020’s JRA 1.2 and described here comprises a number of case 
studies of the dynamic phenotyping methods which are now being drawn together. These span 
the two approaches to 3D information outlined above. Section 2 outlines work done at DLO on 
improving the 3D models available to drive dynamic approaches and at UNOTT on active 
approaches to 3D reconstruction. Section 3 focusses on work at INRAE and UCL which takes 
approach (ii), basing camera control on deeper analysis of 2D images acquired from known 
locations. Though the distinction is not a hard one, the work reported in section 2 is oriented 
towards reducing variation in phenotyping data, while that in section 3 is motivated by interest 
in multi-scale phenotyping. More detailed analysis is a goal shared across the consortium. 
Following description of the independent projects, plans for the remainder of the project are 
summarised, before conclusions are drawn in Section 4. 
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2. 3D Reconstruction and Dynamic Phenotyping 

2.1. 3D Reconstruction from Multiple Images 
 
Three-dimensional information can be recovered from multiple 2D images in two ways. In the 
first, points of interest are identified independently in each image and matched between views. 
If it can be established that feature A in image 1 depicts the same physical point as feature B 
in image 2 – the features here may be leaf tips, for example – then the 3D position of that 
physical point can be obtained by triangulation (Figure 3). The process requires accurately 
calibrated cameras, as the relative positions and orientations of the cameras used must be 
known, but once this information is obtained the transformation from multiple 2D features to 
one 3D feature is straightforward. 3D models produced in this way are formed of sets of 3D 
points lying on the visible surfaces of the object under consideration. 
 

 
Figure 3. 3D reconstruction by point matching 

 
The second approach, known as shape from silhouette or space carving, produces a very 
different, volumetric representation of the object being modelled. This is effectively a 3D image: 
the space containing the plant is represented as a 3D grid of “voxels”, with each being labelled 
as containing, or not containing, plant material. Space carving also requires the cameras 
involved to be calibrated, so that their relative positions and orientations are known, and 
proceeds by combining the results of analyses of individual images. These analyses, and the 
form of their combination are however different. Each image is segmented, to separate the 
object of interest (e.g. the plant) from its background. The result is a set of silhouettes of the 
plant, which are then projected into the voxel grid. Any voxel lying outside any projected 
silhouette is labelled as not containing object (plant) material (Figure 4). 
 

          
 

 
Figure 4. 3D reconstruction by space carving. 

 



EPPN2020 Deliverable D1.3 

 

Page 9 of 15 

 

2.2. Improved 3D reconstruction by Space Carving (DLO) 
 
Work on the recovery of 3D descriptions of plants at DLO is based upon space carving, and 
so produces a volumetric description. One of the challenges of the approach is achieving 
sufficiently high resolution at high throughput. The processing time required to produce a model 
depends mainly on the size, and so number, of the voxels making up the 3D representation. 
Increasing resolution significantly increases processing time; reducing resolution allows faster 
processing but risks producing a model which lacks fine details. This is particularly important 
when using the technique in plant phenotyping, as many important plant components are small. 
A specific concern is that stalks will be lost, and the connectivity of the plant will be reduced. 
Rather than produce a single plant volume, reduced resolution space carving quickly leads to 
a fragmented model from which traits are difficult, if not impossible, to extract. 
 
DLO’s work in JRA1.2 has focused on  
 

i. increasing the resolution of the 3D acquisition process, so that even the finer 
structures remain connected 

ii. Improving and developing methods for automatic analysis of connectivity and 
segmentation 

 
A new space carving facility (Figure 5) has been designed and implemented employing 15 high 
resolution colour cameras. The installation is able to model larger plants (40 x 40 x 70 cm) at 
ultrahigh resolution. The representations produced comprise a grid of 1400x800x800 voxels, 
describing the plant at a resolution of 0.5 mm, which is sufficient to maintain the connectivity 
of the plant. 
 

   
 

Figure 5. The Wageningen large plant, space carving facility 
 

 
Methods have also been developed for making this connectivity explicit, by skeletonising the 
voxel representation. This process locates points at the centre of plant components, e.g. stalks, 
and links them together to produce a simpler representation of the core structure, or skeleton, 
of the plant. Figure 6 shows an example of the data produced. To the left is one of the input 
images used; the central graphic shows the 3D volumetric representation, upon which the 
skeleton is overlaid in the rightmost illustration. 
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Figure 6. Results from the Wageningen space carving installation. Left: an input image, 

centre: the volumetric description, right: skeletonization. 
 

Current work in Wageningen is directed towards further analysis of the volumetric 
representation. Techniques are being developed which can automatically identify plant organs, 
e.g. leaves, in the 3D data, exploiting the connectivity information made available in the 
skeleton. It is anticipated that this will provide more accurate and robust segmentation than 
previous algorithms which rely on voxel data alone. The skeleton will allow correct 
interpretation of the more complicated situations which can arise, e.g. when leaves touch, 
causing loops to appear in the plant volume. Figure 7 shows initial results. 
 

 
Figure 7. Initial plant segmentation results, on a small plant. 

 

2.3. Active 3D Reconstruction (UNOTT) 
 
Work on the recovery of 3D descriptions of plants at UNOTT is based upon point matching, 
and so produces a description of visible surfaces. Early work at UNOTT developed a point 
matching method in which an initial point cloud created by a general multi-view method was 
enhanced by techniques designed for specific use on plants. The points produced were 
clustered into sets likely to represent points on the same leaf, and a plane fitted through them. 
This very crude leaf description was then enhanced by a region growing process which 
operated in the leaf plane but referred to the input images. The approach showed improved 
performance over previous methods but required a large number of images to produce good 
quality representations. The complexity and variation present in plants means that it is 
impossible to predict a priori which views will be needed and a set of 40-60 were found to be 
necessary to give good coverage. There is, however, still no guarantee that the images needed 
to reconstruct a given plant will be available, and it is common for many of those captured to 
be found unnecessary. 
  
The existing UNOTT system is the starting point for improvement made during EPPN2020, 
where the goal was to construct an active reconstruction system in which the images used to 
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create the 3D model are automatically selected in response to initial estimates of plant 
structure. 
 

     
 

Figure 8. The UNOTT active vision cell. 
 
To achieve this, an active vision cell was constructed in which a camera was mounted in the 
gripper of a 6 degree of freedom robot arm capable of controlling camera position and 
orientation over a large working area and the plant placed on a nearby, computer-controlled 
turntable (Figure 8). A full calibration process recovers the relationships between camera, 
turntable and robot control parameters. A small set of images is captured from fixed positions 
to initiate the process. The plant is segmented from the background in each and the camera 
moved to centre the plant in the view. This creates a second set of images which are used to 
create an initial, low resolution 3D model of the plant via space carving. 
 
The voxels making up this representation are clustered into small compact groups (Figure 9b), 
to reduce computation, and the visibility of each is assessed. For the point matching method 
to be successful, each area of the plant much be viewed by 2-4 images acquired from 
viewpoints satisfying constraints on their relative position and orientation. If any voxel clusters 
cannot be associated with images meeting these requirements a search is performed for 
viewpoints which would provide them. The robot then moves to those positions and captures 
the necessary images. Any redundant images are also discarded.  
 
The UNOTT point matching algorithm is then applied to produce a set of 3D points lying on the 
plant surface. As a final filter, points lying outside the initial volumetric description are 
discarded; these are clearly the result of mismatched image features. A surface is then fitted 
over the remaining points to produce the final plant model. Figure 9 provides an overview of 
the process. 
 

 
 
Figure 9. Overview of the reconstruction process on a Bromeliad (Vriesea sp.). (a) an image 
acquired by the active vision cell (b) point cloud representation containing outliers, (c) initial, 

volumetric representation, (d) merged model, (e) final 3D surface model  
 
The active reconstruction system was evaluated by comparing the surface descriptions 
produced from colour images by the active cell with similar data structures obtained via X-ray 
computed technology in the University’s Hounsfield Facility. A set of 6 plants with varying 
structures were scanned, segmented to separate plant material from the surrounding air and 
surfaces fitted. Note that while the Hounsfield’s equipment produces high quality plant 
representations well-suited for use as ground truth, it is too expensive to be used for a task 
that can be achieved using more accessible technologies.  
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The active method was found to produce more accurate plant reconstructions than previous 
methods from fewer images, providing proof of concept of active 3D plant reconstruction. 

2.4. Next Steps (DLO, UNOTT) 
 
Because they are front-of-science and need to be developed close to application, the activities 
described above have been carried out separately, but with frequent exchange, in Wageningen 
and Nottingham. In the final year of EPPN2020 the data and techniques produced will be brought 
together and made available to the phenotyping community. Specifically: 
 

i. Data sets created by the two groups will be exchanged and the potential for further 
improving model connectivity by combining data structures will be assessed. The 
camera control strategies developed at UNOTT will be revisited and the potential 
for improved active reconstruction strategies based upon the organ segmentations 
provided by DLO’s reconstruction and plant segmentation methods will be 
examined. 

ii. UNOTT’s current system will be used, as a research tool, to identify imaging 
strategies suitable for different plant species/types. Two sets of plants will be 
modelled using the active cell, chosen for the differences in their physical structure. 
Attention will focus not on the quality of the models produced, but on the sets of 
viewpoints used to create them. These viewpoints will be plotted on a notional 
sphere surrounding the plant holder and smooth paths through those points sought. 
Identification of a path across the sphere which passes through the set of 
viewpoints used for a particular plant type will suggest a suitable viewing strategy. 
The models produced by a camera adopting that strategy will be assessed against 
ground truth and those produced by the active cell. Effective strategies could be 
used either to better initialize the active component for a given plant type, reducing 
the computation required, or be used in isolation in situations where active 
refinement of the strategy is not required/possible. 

The actions will result in software elements first shared with the whole consortium for 
further test, and then made available to the whole phenotyping community via publication 
in an academic journal, whereas software elements will be available in a public repository.  

  

3. Dynamic Phenotyping of Selected Plant Organs 

3.1. Maize Silk Phenotyping (INRAE) 
 
While 3D information is required to actively control camera placement, this need not take the 
form of a complete model of the plant. The point matching approach to 3D reconstruction can 
be applied to any image feature: in full 3D reconstruction methods it is applied to all those 
available, with the goal of producing as much 3D information as possible. An alternative 
approach is to recover and use the 3D locations of only those pixels that mark features of 
particular biological interest. This shifts the emphasis of the work away from more generic 
issues in 3D object modelling and towards the use of biological knowledge, and is the approach 
taken in the maize silk phenotyping system developed at INRAE. 
 
Silk growth is a major trait for drought tolerance in maize, but one which is difficult to phenotype. 
First, maize plants have a distinctive, near planar architecture; images must be captured from 
viewing directions approximately normal to this plane to avoid high levels of occlusion which 
will prevent the silks from being visible at all. Second, silks are very small. Maize silks comprise 
hundreds of pollen-collecting filaments that must be imaged at close range if meaningful growth 
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data is to be obtained. The usual need for high throughput operation, however, makes close-
range inspection of the entire plant impractical, even when a suitable view is available. To 
address these problems, INRAE has developed an active method capable of monitoring the 
silk growth of hundreds of maize plants every day.  
 
First, the whole plant is imaged from multiple views: one top and 12 side views are acquired 
(Figure 10). The top view is segmented to separate plant material from background (Figure 
10a) and a straight line fitted through the plant region. This line gives a good indication of the 
plant’s major axis and allows some of the available side views to be rejected immediately, as 
not being close enough to perpendicular to that axis. Secondary linear regressions are 
performed on pixels lying far from the plant axis (shown blue in Figure 10b) and used to identify 
leaves which restrict the view of the remaining images (shown yellow in Figure 10c). Together, 
these processes allow usable images to be selected. In the example shown in Figure 10 this 
results in selection of the one acquired from the “90 degree” view. While not suitable for silk 
phenotyping, the selected image(s) are of sufficient quality as to allow the detection of maize 
ears. 
 

 
 

Figure 10. Side view selection in the INRAE maize silk phenotyping system. See text for 
details. 

 
The selected side-view image is segmented, and the plant region skeletonised. The stem is 
extracted from the skeleton and its width computed at regular intervals. Knowledge of the 
structure of maize plants and the shape of maize ears is embedded in an algorithm which then 
detects ears in the selected image. The 3D (x,y,z) position of the detected ear is computed 
from the top and selected side image(s), providing the 3D information needed to support active 
image acquisition.  
 

          
a.                                               b. 

Figure 11. a. The INRAE active camera, b. sample image use in maize silk 
phenotyping. 
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At this point the plant is moved into a second imaging chamber and rotated so that the plane 
containing leaves (as previously identified from the top view) is perpendicular to the axis of a 
computer-controlled camera (Figure 11a). The 3D location of the detected ear then allows the 
camera to be positioned 30cm from the ear, providing an image (Figure 11b) from which data 
on silks can be extracted. 

3.2. Next Steps (INRAE, UCL) 
 
The image acquisition hardware and processing pipeline developed for maize silk analysis at 
INRAE have clear potential to be adapted to other phenotyping task. In the final year of 
EPPN2020 two such adaptations will be carried out: 
 

i. INRAE will create a grape phenotyping system based on their original hardware 
designs, image analysis and camera control code. Whole plant images will be 
acquired, and biological knowledge of the likely position and appearance of grape 
clusters embedded in software capable of their detection. Once detected, the 3D 
position of each cluster will be computed and a camera positioned to acquire a 
higher resolution image centred on the cluster which will be used to gather trait 
data. 

ii. UCL will complete development of a similar system, re-using components from 
INRAE where possible, for growth analysis of aeroponically-grown roots (Figure 
12). Initial views will allow detection and 3D location of root tips, and an x,y,z-
controllable camera will be positioned, at successive times over a period of growth, 
to assess root development. 
 

 
Figure 12: Sample image from the UCL aeroponics facility. 

 
Code and designs for the INRAE maize silk system are already publicly available. The addition 
of similar materials from the grape and root tip work will initiate a library of scripts and tools for 
dynamic phenotyping of plant organs. 

4. Conclusion 
 
Automation is the key to high-throughput plant phenotyping, and current large facilities are built 
upon concepts developed in automated manufacturing: plants are often maintained on 
conveyors, travelling from one workstation to another as they each undergo the same series 
of fixed processes. Dynamic phenotyping takes a step away from automation and towards 
robotics, the key distinction being that while automated systems repeat the same operation 
multiple times, robotic systems sense their environment and take action accordingly. Rather 
than rely on fixed camera positions and image analysis pipelines, dynamic phenotyping 
methods seek to adapt the sensing strategy to the plant at hand and introduce a feedback loop 
between image acquisition. Dynamic phenotyping has the potential to increase the consistency 
of plant measurements, allow more detailed measurements to be made and support multi-
scale phenotyping, but requires some 3D information to be available. 
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Work in JRA 1.2 of EPPN2020 to date has comprised a number of case studies which are now 
being brought together. Work on 3D reconstruction and maize silk phenotyping has 
demonstrated the feasibility of constructing practical plant analysis systems based on dynamic 
principles. In the final year of the project the techniques developed will be adapted to new 
phenotyping tasks, combined and consolidated. We shall seek new possible case studies that 
can be developed in other nodes of the project, on other species or organs. This will serve as 
a further test of the methods presented here. Some of the software tools are already available 
for the whole phenotyping community via academic journals and public repositories. This will 
be the case for all other methods presented here, at the end of the test procedures.  


