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Executive Summary

Objectives:

Make an inventory of sources of variation at phenotyping platform that disturb comparisons of
treatment or genotypic differences.

Develop guidelines, instructions, teaching material and software for choosing adequate
statistical designs for experiments at phenotyping platforms.

Rationale:

The spatial and temporal heterogeneities at least as large in-door phenotyping platforms as in
field experiments. We have adapted for indoor platforms techniques used in field experiments.
Randomization guarantees unbiased estimates of treatment differences, where treatment
differences include genotypic differences. An appropriate design contains sufficient
replications of treatments to achieve satisfactory power for detecting treatment differences.
Finally, an appropriate statistical design contains blocking structures to counteract
environmental gradients. Blocking is a strategy to group experimental units into homogeneous
groups of blocks, while within-platform environmental differences become part of between
block variation and therefore will not add to the error for assessing treatment differences.
Blocking allows more precise estimation of treatment differences.

To reach D2.5, WP2 made an EPPN%2° wide inventory of within platform environmental
sources variation that could disturb the estimation of treatment differences. EPPN2°2° platform
partners were asked to describe their installations. Exchanges between WP2 and EPPN2020
platforms led to the formulation of research questions, treatment contrasts and blocking
structures. Subsequently, statistical designs were proposed, discussed and used by partners.

Based on the platform inventory and on exchanges with platform leaders, guidelines were
developed for choosing statistical designs for platform experiments and various design
generation programs were evaluated for their suitability in helping platform partners generate
their own designs. Furthermore, a new user-friendly design generator was created and
presented in which an intuitive graphical user interface should guide users to an appropriate
design. This introduction was supported by examples based on real experiments from
EPPN?2920 project partners. The software and supporting instruction material are available from
the EPPN?? jntranet.

Main results:
An inventory of within-platform sources of variation for the EPPN2°%° platforms and advices

for suitable statistical designs to individual EPPN?°2° partners. Guidelines and software for
choosing statistical designs for platform experiments, including a specially developed web-
based app with a user-friendly graphical interface.

Authors/Teams involved: Emilie Millet (WU), Robert Horne (VSNi), Darren Murray (VSNi) &
Fred van Eeuwijk (WU)
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1. INTRODUCTION

1.1. Aim of the EPPN2020 project

The EPPN?°?° project aims at providing public and private European plant scientists access to
a wide range of state-of-the-art plant phenotyping facilities, techniques and methods. It will
help the plant community in progressing towards excellence across the whole phenotyping
pipeline that includes sensor and imaging techniques, data analysis adjusting treatment
contrasts for environmental conditions and placing interpretation in a biological context, data
organization and storage, and analysis of series of experiments as well as meta-analyses of
experiments.

EPPN?2%2 coordinates its activities with the future infrastructure EMPHASIS, listed in the ESFRI
roadmap, and with national programs. EPPN%% involves:

- access to 31 key installations at 15 infrastructures,

- aWork Package on sensors (WP1),

- aWork Package on data analysis (WP2),

- aWork Package about data management (WP3),

- networking activities for establishing cooperation and increasing integration between

facilities both within and outside EPPN%°20,

1.2. Scope and aim of the document

New phenotyping platforms require a reconsideration of classical experimental design and
analysis techniques. Although this is not widely recognised, spatial and temporal
heterogeneities in platform conditions are at least as large as in the field, if not larger, so it is
essential that users choose appropriate experimental designs, models and analysis methods.
WP2 addresses the lack of statistical design guidelines and analysis tools for data from
phenotyping platforms. It has developed procedures for obtaining experimental designs with
different tools for various types of platforms. It has also developed a new tool for design
generation with a user-friendly interface.

This document describes procedures and software available to generate experimental designs
for phenotyping platforms. To help platform users follow the basic rules of experimental design,
we proposed (1) a three-step procedure for choosing a suitable design, (2) a presentation of
available software programs, including one newly developed in this project, and (3) example
procedures for each type of design identified in the EPPN2°2° consortium, based on real
experiments from partners.
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2. PROTOCOL FOR EXPERIMENTAL DESIGNS ON PHENOTYPING
PLATFORMS

We conducted a survey and visited several facilities from 2017 to 2019. Based on the outcome
of the survey and visits we concluded that EPPN2°?° platform managers have a good
knowledge of the possible sources of error variation on their installations: they are able to
describe the main trends likely to affect the plants and a majority of them have already
quantified the temperature, water and/or light variability of their installations. Therefore, they
are in a good position to choose a suitable design, provided that basic rules for choosing
experimental design are followed. There are three basic principles of experimental design:

e randomization, to avoid confounding of treatment differences and (unknown) other
differences between (groups of) units,

¢ replication, that allows quantifying the experimental variation between experimental units
and increasing the precision of estimated effects,

e restriction of randomization, or blocking, which is a local control to reduce the experimental
error by grouping experimental units into blocks of homogeneous units.

To help the platform user follow these rules, we proposed a standard three-step procedure
before carrying out the experiment.

1. Platform description: the platform manager/user should first describe the installation
in a statistically intelligible way. At this step, it is strongly advised to draw a map of the
platform in the form of a two-dimensional grid and to add the existing trends likely to
affect the experimental treatment(s) (Fig.1). This first step aims at helping the platform
user to define the overall platform layout 1 2 3 c
and position the blocks orthogonal to
environmental gradients (measured or 2
expected).

[

Direction of cooling system

Figure 1. Scheme of a hypothetical platform
described as a rectangular grid with r rows and c
columns. Each square contains one experimental
unit (e.g. one pot). The direction of the cooling
system follows the grey arrow, indicating a possible
temperature gradient.

2. Experiment description: defining the number of treatments applied to the
experimental units (number of genotypes, number of water regimes, etc.), the number
of replicates for each treatment, the experimental layout (if different from the installation
layout, e.g. only a subset of experimental units at the platform is used, see Fig.2) and
the block layout (if any). This step aims at facilitating the design generation by a
software. Computational checks are performed, such as verifying that the number of
treatments x replicates is compatible with the platform size and/or block sizes. As a
remark we add that for D2.3 we aim at identifying a good blocking structure and
randomization scheme, we did not address the question of how many replications to
include as typically the size of the platform imposed severe limitations on the number

‘ 4 atypi
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of replications that could be chosen and as a rule the number of replications was
dictated by the available resources (platform size).

12 3 45 6 7 8 9 10 11 12 13 14 15
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(== N« G I S P R R

12 Figure 2. Map of the experiment at the
ﬁ 4PMI group (INRAe France). The
iz experiment was carried out in a part of
17 the greenhouse. Randomization
18 L " N

19 restrictions (blocks) were defined in row
o and column direction. More details in
22 section 4.2.

3. Design specification, check and visualisation: at this step, the platform users need
to choose the software to generate the design. To assist them, we provide procedures
with different software applications for types of design that are common for the
platforms (see below part 4.).

Finally, the design should be checked to ensure that the treatments are adequately allocated.
For example, (1) blocks in randomized complete block designs or resolvable blocks in
incomplete block designs should contain all the treatments, (2) if a 2D latinization is used, rows
and columns should not contain multiple occasions of a particular pair of treatments, (3) if a
highly replicated treatment (e.g. check genotype) is added in an augmented design on top of
a standard design for the treatments (genotypes) of interest, this augmented design needs to
be checked as well. In general, concurrences of treatments need to be verified to see whether
they follow the assignment rules of the chosen design.

Using a block structure or re-allocating the plants during the experiment?

A complication in relation to choosing a suitable design for phenotyping experiments is that at
certain types of installations plants change position during the experiment. Ideally, at every
step of the experiment a suitable randomization should be chosen. However, in practice the
position of the plants on a platform after an initial round of observations is determined by the
mechanical restrictions of the installation that allocates the plants to positions on the platform.
When plants are not allocated following a randomization scheme dictated by a statistical
design, the subsequent statistical analysis is not obvious and may lead to invalid conclusions.

In the proposed protocols below, we restrict ourselves to recommendations for experiments
with fixed plant positions over the duration of the experiment. The hypothetical advantages of
the re-allocation option strongly depend on the platform and the type of designs (Brien et al.,
2013; Hartung et al., 2019) and it would require further testing at each installation to find out
what can be achieved by combining design and reallocation. Furthermore, no available
software can currently automatically generate designs for multiply to be reallocated plants.

Page 7 of 19
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3. TOOLS FOR EXPERIMENTAL DESIGN

3.1. Programs to generate experimental design

Several computer programs are available to generate experimental designs. When considering
simple designs, such as randomized complete blocks or small split-plot designs with few
experimental units, the R package agricolae provides experimental designs for agricultural
experiments (de Mendiburu, 2020). Another option is the Genstat software
(https://lwww.vsni.co.uk/software/genstat).

When many experimental units are considered, with different levels of replication and/or
latinization, then the following programs are advised:

o DiGGer (, 2019) is an R package (Team, 2019) that generates designs based on the
Reactive Tabu Search (RTS) algorithm (Coombes, 2002). Details of the program can
be found in the package vignette.

e OD () is an R package that generates optimal experimental designs under the linear
mixed model (Butler, 2013). Details of the program can be found in the package
vignette.

o Dblocksdesign () is an R package that provides functionality for the construction of
nested or crossed block designs for general linear model treatment designs
(Edmondson, 2020). Details of the program can be found in the package vignette.

o The OPTEX procedure of SAS performs a numerical search for an efficient design
based on the D-optimality criterion (Atkinson et al., 2007). Details on the use of OPTEX
can be found in (Piepho et al., 2015).

e The windows software CycDesigN 7.0 () for optimal or near-optimal experimental
designs (Williams, 1995).

The key step of these programs is to swap the treatments between experimental units based
on an initial design that is improved during the swapping. The swapping continues until an
optimization criterion is reached, for example when a minimum A-efficiency (related to the
average variance of pairwise comparisons of treatments) is obtained. The criterion depends
on the software and the type of design, and is automatically calculated at each swap. The
swapping is often restricted, either by the block structure (if any), or by the assumed correlation
function between experimental units (e.g. in DiGGer), or by the model initially chosen (e.g. in
OoD).

3.2. A new tool for experimental design: the design generator

In the project, a web-based application has been developed to help platform users generate
an experimental design. The design generator app has been developed by Robert Horne and
Darren Murray (Fig.3, VSNI) and a first release has been made available to partners in the
project:
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EPPN2020 Design Generator Search for a Design
f Resolvable Row Column H Split-Plot
row, column, 2d-hblocking, resolvable split-plot, split, whole-plot, sub-plot,
= factars, levels
° 4 q q
3 4 q a
@' The RCD approach consists in viewing the phenotyp
An experimental design with a nested structure wher
> 0 v
> 0 v
Randomized Complete Block Design  : Augmented Row Column Design
randomized, random, blocking, simple augmented, row, column
RCBD is the simplest design including blocking: the ... When a design is augmented, few check genotypes

Figure 3: Homepage of the design generator website.

The design generator includes the possibility to create a facility based on a user defined
platform. This stores features about the platform such as the dimensions that can then be used
to guide the user in the generation of the design. The app provides a range of designs and
uses visualizations to assist the users understand and create their designs. It maintains a
history of generated designs where each design can be visualised in a 2D map and can be
downloaded within a csv file. In the current version there are five types of design available:
Randomized Complete Block designs, Resolvable Row-Column designs (Piepho et al., 2015),
partially replicated designs (p-rep, (Cullis et al., 2006), Augmented Row-Column designs
(Piepho & Williams, 2016) and Split-Plot designs (Welham et al., 2014). The computation of
the designs is being powered by CycDesigN - and Genstat
(https://www.vsni.co.uk/software/genstat). The app is hosted on AWS and access is provided
for free to EPPN292° partners for the duration of the project. A tutorial has been made available
for all partners. After completion of the project, the app will be made available to EPPN?202°
partners at a reduced rate.

The advantage of the design generator is that it provides a user-friendly interface while
ensuring robust design generation. This enables the platform users to easily generate designs
without advanced statistical or programming knowledge. The visualization of a simplified
scheme of the design at each step of the design generation (creation of the facility, design
specification and final check) allows the user to understand the layout for each type of design
in relation to their platform. It also makes it an appropriate tool for teaching courses about the
design and analysis of phenotyping experiments.
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4., |LLUSTRATIONS OF PROTOCOL FOR VARIOUS EXPERIMENTAL
DESIGNS

4.1. Randomized Complete Block Designs

The Randomized Complete Block Design (RCBD) is the simplest design including blocking
and the randomisation of treatments takes place inside the blocks. Blocks are randomized as
a whole as well. The number of blocks is equal to the number of replications; therefore, each
block contains each treatment exactly once.

Example of RCBD: GrowScreen-Rhizo at Julich Plant Phenotyping Center, FZJ (provided by
Kerstin Nagel and Fabio Fiorani) — Online support at:

Briefly, the installation GrowScreen-Rhizo system is in an experimental greenhouse and
consists of two lines of mounting frames in which rhizo boxes are inserted. Between both lines
of rhizo boxes a cabinet for imaging is moving automatically on a linear axis. This can be
viewed as a grid of 36 rows by 2 columns, where one column is one line
of rhizo boxes and one row contains two rhizo boxes.

The example procedure contains an experiment from the joint-platform
experiment (WP1 and WP2 from the project). This experiment was
carried out on the entire platform (36 x 2), including the 72 rhizo boxes
with one plant per rhizoboxe. Nine genotypes (treatments) were tested
with 8 replications each. Eight complete blocks of nine units were made,
for a total of 72 plants (experimental units) (Fig.4).

- The design generator web-based tool was used to create
“Randomized Complete Block” part. This generated the randomization
of number 1 to 9 per block: The output was then formatted using R, to
randomly assign the numbers to genotype names and the block
numbers to the actual blocks in the platform.

Figure 4: Design visualisation with the R package desplot. 7

Four genotypes are highlighted in colour, the rest are white.

8 9
3 3

4.2. Row-Column Designs

When many treatments are used (large number of genotypes), the randomisation in the RCBD
sometimes leads to undesirable arrangements of treatments (e.g. two pairs of treatments
occurring close to each other).

In most phenotyping installations, control and/or correction of micro-climatic conditions is
essential. To this end, we can use two-way blocking strategies, like the Row-Column Design
(RCD), where the blocks are best chosen following prior knowledge of the structure and
magnitude of existing noise variation. The RCD approach consists in viewing the phenotyping
experiment as a rectangular grid on a set of row and column coordinates (r x ¢). Row and
column blocks can be defined as incomplete blocks in two directions. To ensure that treatments
will be as evenly spread as possible over columns and/or rows, it is possible, and sometimes

o,
T —

-
-
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desirable, to use a so-called resolvable row-_column design (Piepho et al., 2015). In this case,
complete (resolvable) blocks, i.e., with all treatments, are defined that encompass contiguous
subsets of rows and columns). The balancing of treatments across rows and columns is called
latinization and ensure that pairs of treatments (genotypes) are evenly spread in the row and
column direction.

Example of resolvable RCD: 4PMI at INRAe Dijon (provided by Christian Jeudy and
Christophe Salon) — Online support at:

The installation consists of four connected greenhouses with pots, Rhizotubes, on conveyor
belts. This installation contains a cross-platform experiment for the EPPN2 project. Thirty-
three genotypes will be characterized for their variability in root system in 10 blocks. The
experiment was carried out on a subset of greenhouse number four (capacity of 26 rows x 25
columns), defined by a 22 rows x 15 columns grid. Blocks are laid out in two directions, each
block (full replicate or resolvable block) contains 11 rows x 3 columns, with a row representing
an incomplete 1 x 3 block, and a column representing an incomplete 11 x 1 block. The
genotypes were latinized in two directions along so-called long rows = row (incomplete) blocks

of 1 x 15 and long columns =
(incomplete) blocks of 22 x 1

16
14

30

: 20 7 26 1 25 29 9 i2 11
(FIQS) . . 9 13 5 27 24 15 29 19 18
- The online support includes |l s @ ]« 118 s |25 21 2

. . 14 24 27 28 23 12 15 3 5
examples of instructions for | s 1w & | = 20 e &+ 13

CycDesigN 7.0, the R package

a |
22

DiGGer and the JdeSign | ——————
22 20 15 5 17 11 27 30 28
generator app. 8 -E 6 12 14 ) s EEl 4
23 5 29 10 18 15 12
24 30 4 3 31 1 10 17 14 15 7 26 18
Figure 5: Design visualisation of the moo1e 4 2z s g2z 3 73 20 wBYES5 29 23
. . 31 18 3 24 [ 1 8 - 14 27 19 16 12 21 17
DiGGer ouptut with the R package 0 27 6| s o QM s | s & ]m
desplot.  For illustration,  four 17 25 1w fis 1w 7 1 s g Qs 28 2122 1 13
H H H [ 26 12 20 13 18 22 23 16 8 17 11 10 30 31
genotypgs arg highlighted in colour, - P e 0 w it
the rest is white. 13 210 9 fJea a0 =28 o 2 10 1 29 I 6 B 15

4.3. Augmented p-rep designs

In plant genetics, platform users try to maximize the number of genotypes they test. In this
case, to be able to estimate the error variance and adjust for the global and local trends, one
strategy is to partially replicate only a small number of genotypes of interest: the p-rep design
(partially replicated design). A p-rep design can be generated using any block design for the
replicated entries, usually about 25-30% of them, and then augmenting it with the un-replicated
entries by allocating them to the free plots in completely randomized order (Cullis et al., 2006).
Another strategy is the Augmented Row-Col design (Piepho & Williams, 2016). In this design
a row-column randomized complete block design for a few check varieties is combined with
un-replicated genotypes that are assigned to free positions inside the blocks.

Ewropesn
Plunt Phenotyping
oWy Netwark

EPPN 2020
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Example of Augmented design: NaPPI, University of Helsinki (provided by Kristiina Himanen
and Mirko Pavicic) — Online support at:

The UHEL NaPPI (National Plant Phenotyping Infrastructure) large plant facility is located at
the University of Helsinki (Finland, ). The installation is in a greenhouse and consists of pots
on conveyor belts surrounded by different cabins. Single pot trays are distributed on 9 lines
(rows) of 30 trays for a total of 270 trays with single pots and one plant per pot.

A segregating population of 192 BC4F, Brassica rapa plants was characterized on this platform
(segregating for a dwarf gene). Their genotypes were unknown before the experiment:
sampling was done after emergence. One parent genotype was used as control with extra
seeds. The experiment was carried out on part of the platform: 8 row x 30 columns with 193
genotypes (treatments): one replicate for the 192 genotypes of the segregating population and
48 replicates of the control parent (check genotype) for a total of 240 plants (experimental
units).

The assignment layout for the plants of the check genotype (gray rectangles) is shown for two
possible design options: (1) systematic design for check genotype occurring at every 5 pots
on a row and diagonal arrangement across rows (2) row-column design in a series of 2 rows

x 3 columns incomplete [« o l . lm m o l o l = s l w l
blocks. In the second option, |. l o s l i l - l o s l o l .
plants of the check l 2 s l o l w l cm o l @ o l e s e
genotypes were latinized in |, ., l ”l . l o l - sﬁl l
two directions (Fig.6). l l” o l o l - e l l "
> The online support | l - l% - “l - l e l - ‘“l
includes instructions for the | “l - l o l o l R l A l “
R package DIGGer, lmz - l l o e l s w o ml . l P

CycDesigN 7.0, and the
design generator app.

Figure 6: Design visualisation of
the DiGGer outputs with the R
package desplot. Plants of the
check genotype are highlighted in
grey. Top, systematic design;
bottom, row column design with
blocks (black lines).

32 160 15 134 11 f108 97 55
63 18 147 20 99 wml

4.4. Augmented Resolvable Row Column Designs

In many large platforms, when the number of treatments is large, it is impossible to define
complete or resolvable blocks with the full set of treatments that are sufficiently homogeneous
even after correction for row and column incomplete blocks, i.e. the complete blocks are so
large that there could be spatial trend(s) inside the block that are not covered well by the row
and column incomplete blocks. In this case, the design can include one or few highly replicated
genotypes (usually well-known reference varieties) that will help characterize the spatial

i@iﬁ'&"ximﬂng Page 12 of 19 i
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variability. The design combines an initial resolvable row-column design and an augmented
design on top of the original row-column design. The basis is a resolvable row column design
to which one or more highly repeated checks are added. The checks occur in incomplete
blocks that cover a small number of rows and columns and in which the candidate genotypes
are latinized in row and column direction, i.e., across ‘long’ rows and ‘long’ columns.

Example of an augmented resolvable RC design: ETHZ (provided by Andreas Hund) —
Online support at:

The platform is the Field Phenotyping Platform (FIP) at the Swiss Federal Institute of
Technology in Ziurich (ETHZ, Switzerland). A rope suspended carrier system holds multiple
sensors which can be positioned over individual plots or plants.

The experiment consisted of two complete
W w o = s wowmow o w w s Il o e s =1 plocks  with 354 genotypes: 351 test

2 102 1z 208 280 57T 211 3% 23 100 228 201 ETEERESERFI -
s sz e [l > s e o JEll 2 % s 25 e s 146 26 26 t d th h k 1 t
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w  co BN 37 o a7 s om [ v s 26 25 e e s 2 e
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Example of an augmented resolvable RC design: rootPhAir, UCLouvain (provided by
Xavier Draye) — Online support available at:

The RootPhair platform at the UCLouvain (Belgium) consists of two aeroponic tanks of 495
plants located in the same greenhouse. Plants are hold on 5 plants strips with 99 strips per
tank. Sprinklers are placed at the bottom of the tanks and spray nutrient solution. In each tank,
strips of 5 plants are constantly moving following the orange arrows (Fig.8).
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Chmefa Chmefa
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A
Figure 8: Schematic top view of the two tanks. Strips
(seeeq [coe o] [coe e [eee e ]/ contain five plants (five green dots) and they move following
[ceces _mml [cecer] _mml the orange arrows.

We could consider a tank as 49 rows by 10 columns rectangle.

However, after the first strips rotation step, the rows are broken up in | & & == & =
the middle (between two strips, Fig.8). The 99 strips are 99 rows that | i ==t L %
stay intact during rotation (strip n is always between strip n-1 and n+1) [®8™ & & s
and each strip has 5 positions that travel on their own rotational paths. 54 ; 75 & 78
Each tank can be seen as a 99 x 5 row-column structure. R S
In an experiment, a panel of maize genotypes was characterized for ; «;é 1g;gﬁ'
root traits. The collection to screen comprises 146 test genotypes, with | i i+ g _
6 seeds per genotypes. There are two check genotypes, a reference | —g——s—a S
variety, with limited seed availability (40 seeds). Another check | i & & 5
variety, a commercial variety with ample seed fills up the remaining [ 2"
positions. Per tank, we created three complete blocks, €ach |ms & 4 == %
containing the 146 test genotypes. We added per block 6 or 7 plants | & =% ¥ ¢ .
of the reference variety and 12 or 13 plants of the commercial variety. 30 Is & 5,, 37
The reference and commercial varieties were assigned to positions [l 5 T o

across the full tank following a design with incomplete blocks in long | i
columns (99 x 1) and incomplete blocks in columns of (11 x 1) (Fig.9 | &
and see the online support for more details). g

- The online support includes explanations for the R package |
DiGGer, CycDesigN 7.0, and the design generator app. i

Figure 9: Design visualisation of the DiGGer output with the R package desplot. Two S
genotypes are highlighted in blue and yellow, the two checks are in green and red,
and the rest is white. Replicate block layout is highlighted with black lines.

4.5. Split-plot design

A split-plot design is used when at least two treatments are simultaneously tested in one
experiment at differently sized experimental plots (Welham et al., 2014). The levels of one
treatment factor are applied to large experimental units or whole plots (e.g. a fertilizer applied
to many plants simultaneously) while the levels of the other treatment are applied to smaller
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units, i.e., sub plots, within the whole plots (e.g. a panel of genotypes where each sub plot
contains one or more plants of a genotype). For example, we consider a field experiment with
six levels of nitrogen (N1 to N6) and four rice variety (V1 to V4). The randomization will be
done in two stages (Fig.10): in the first step, the nitrogen levels are laid out in a randomized
complete block design (full replicate) and each plot is called a whole plot or a main plot. In the
second step, the varieties are randomized to sub plots within the main plots.

Main plot Sub-plot
V3 |v4 [Vl V3 |Vv2 [Vi

V2 |Vl |[v4 V1 |V1 |V4

Block 1 | N1 | N2 | N4 | N6 | N3 [ N5
V4 |V3 V2 (V4 | V3 | V2

V1 |Vv2 V3 V2 |V4 |\V3

V2 |V2 [V2 V4 |V3 V1

Block 2 V1l (V4 (V3 V3 |Vl |V3
N3 [ N2 | N5 [ N1 | N6 | N4

V4 (V3 (V4 V1 |V4 V4

V3 (V1 (V1 V2 |V2 V2

Step 1 Step 2

Figure 10: Two-step randomization of a split-plot design including six levels of nitrogen (N) and four variety (V)
(example adapted from Gomez & Gomez, 1984).

Example of a split-plot design: the Slovak PlantScreen Phenotyping Unit (SPPU, provided
by Marek Zivcak and Oksana Sytar) — Online support at:

The Slovak PlantScreen Phenotyping Unit (SPPU) at Slovak University of Agriculture (SUA) in
Nitra (Slovakia) consists in a large growth chamber. Pots are placed on conveyor belts with six
lines of 18 pots (108 plants).

The online protocol contains the experimental design of a joint-platform experiment from the
EPPN2°2° project. It was carried out on the entire platform, 18 row x 6 columns. Nine genotypes
were tested in two different soil substrates (one management with two levels = whole plots),
with 6 replications of the genotype per substrate for a total of 108 plants. This is a split-plot
design with six complete blocks (Fig.11A, yellow rectangle), and two main or whole plots per
block with a main plot size of 9x1 positions, (Fig.11A, red rectangle) and nine sub-plots per
main plot (Fig.11B, blue rectangle).

- The online protocol includes explanations for the R package DiGGer, CycDesigN 7.0, and
the design generator app.
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Figure 11: Design A B
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4.6. Designing multiple experiments

An experiment at a phenotyping platform can be defined by set of available experimental units
(pots, plants, positions) on which observations are made during a particular period, the run
time of the experiment. If possible, an individual experiment contains the full set of treatments
and their replicates. In some cases, the number of treatments x replicates is larger than the
number of experimental units that is available during an experimental run. Several
experimental runs with incomplete sets of treatments and / or replicates are consequently
required. One could say that several experimental runs together then form an experiment, with
each individual run containing part of the experiment, or, the experimental runs are nested
within the overall experiment.

For experiments that span multiple runs on a platform, special care needs to be exercised to
arrive at an appropriate design. Such experiments can occur when a large collection of
genotypes (diversity panel, segregating population) needs to be evaluated in combination with
one or more management factors (nitrogen, water, plant density, etc.). Designing the full
experiment should enable (1) estimating the genotypic variability per management regime by
including the a sufficiently large set of genotypes with some replication (p-rep or augmented
design), and (2) estimating the management effect by replicating the management regimes
(split-plot design).

Example of split plot experiment in randomized complete blocks for whole plot
management regimes and p-rep assignment of genotypes within management regimes
combined with augmented row column design at sub plot level for replicated genotypes:
Aberystwyth University (provided by John Doonan and Gina Garzo) — Online support at:

The small plant platform is located at the Aberystwyth University (UK, https://www.plant-
phenomics.ac.uk/index.php/resources/psi-system/). The system is in a greenhouse and can
hold up to 2000 pots and takes RGB and chlorophyll fluorescence imaging. The platform layout
is 80 rows by 25 columns, divided into 100 trays of 4 rows by 5 columns (20 plants).
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A diversity panel of 420 Arabidopsis thaliana genotypes was characterized on this platform
with two management factors: two levels of nitrogen (+N or -N) combined with two plant
densities (1P or 4P), leading to four management combinations or regimes (+N1P, +N4P, -
N1P, -N4P). Three experimental runs, full replicates, were carried out: with each run including
four whole plots of each 20 rows by 25 columns or 4 x 5 crates corresponding to management
regimes (nitrogen x density). The four management regimes were included in a single run on
the platform to avoid confounding experiment and treatment (genotype by management)
effects. In each management regime a full set of genotypes was included for a precise
estimation of the genotypic variability. Within a whole plot corresponding to management
regime, sub plots were assigned to genotypes by following a partially replicated design (p-rep):
400 genotypes were un-replicated, and 20 genotypes were replicated 5 times (Fig.12). For the
replicated genotypes an augmented design was superimposed of tray blocks (4x5 plants) to
better spread them (see more details in the online support).

-> The online support includes explanations for the R package DiGGer, CycDesigN 7.0, and
the design generator app.
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Figure 12: Design visualisation of the DiGGer outputs with the R package desplot. Within one experimental run
(block), two management regimes, out of four are shown, representing whole plots for nitrogen by density regime.
The black line separates these whole plots or two management regimes. Twenty replicated genotypes are shown
in various colours, 30 un-replicated genotypes are shown in grey for illustration, while the remaining un-replicated
genotypes appear in white. The trays are separated by yellow lines.

206 241 408 343 371 407
283 231 406 O 212 237 338
350 283 405 314 392 290 93 228 117 880
358 130 353 BN 204 46 224 520 140 [HEEN es2
382 119 374

Experimental designs for multiple runs can in principle be constructed without too much
problems by generalizing the rules for the design construction of experiments that can be fitted
within single experimental runs. Still, automating the construction of designs for multi-run
experiments is not straightforward and is difficult to include as an option in design construction
software. The most simple case for multi-run experiments was illustrated above. In that case,
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each experimental run coincided with a block and design construction can proceed block by
block, where the earlier described design generation software is still useful.

5. FINAL COMMENTS

The inventory of installation layouts and experimental designs as performed in WP2 showed
that most installation managers know the sources of error variation on their installation. Some
of them use information on direction and magnitude of error trends to improve their
experimental designs but there was a lack of tools and procedures to facilitate the design
generation. Examples provided by the partners and the design of a joint-platform experiment
were used to define a standard protocol for experimental design in phenotyping platforms
together with illustrations for typical cases. These examples will be publicly available, and the
webpage will be enriched with more examples. It also served the development of a new tool,
the design generator by VSNi, which facilitate the design generation with a user-friendly
application.

Further developments of the application tool are expected with the partners’ feedback. In WP1
of EPPN?°2°_installation managers are asked to quantify the environmental error variability by
mapping environmental gradients on the coordinates of their platform. This information could
also be included in the design generator (input from the user) to help defining complete and
incomplete blocks.
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Glossary

CRD - Completely Randomized Design

EPPN2%2%; European Plant Phenotyping Network - 2020
p-rep design — partially replicated design

RCBD - Randomize Complete Block Design

RCD - Row-Colum Design

TNA — Trans-National Access

WP — Work Package
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