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Executive Summary

Objectives: Develop a user-friendly statistical toolbox to analyse single and multiple
phenotyping experiments. Provide instructions for the use of particular statistical models and
techniques as well as make available suitable and reliable software.

Rationale: We developed a classification of phenotyping data that help define appropriate
statistical analyses techniques and software. A pipeline starts with unorganised data as
occurring in images and spectra collected by phenotyping devices and ends at predictions of
complex traits with genotype by environment interactions.

The statistical methodology is based on linear mixed models and spline technology. A first step
in the analysis of time series at plant level is spatial adjustment for individual time points. For
this purpose, two-dimensional spline technology is used. The next step consists in fitting spline
functions for dynamical trait behaviour at plant level to the spatially adjusted data. From the
splines, data summaries describing the dynamics of the fitted curves are extracted as means,
slopes, accelerations, minima, maxima, etc. These dynamic parameters are subsequently
used as response in mixed models for estimating genotypic effects and heritability. When
multiple experiments are performed with a common genotypic panel across different
environmental conditions, statistical analysis methods for genotype by environment interaction
are suitable for analysing the environment dependence of the dynamic parameters.

Main Results: Statistical methods, software, protocols and teaching material for the analysis
of single and multiple phenotyping experiments. The R procedure statgenHTP corrects time
series data as obtained at phenotyping platforms for spatial trends and estimates genotype
and plant specific dynamics’ parameters. Environmental dependence of these dynamical
parameters can be investigated by the R procedure statgenGxE. Descriptions of the methods,
illustrations of use and software were tested in courses and are available at the intranet site of
EPPNZOZO

Authors/Teams involved: Emilie Millet (WU) & Fred van Eeuwijk (WU)
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1. INTRODUCTION

1.1. Aim of the EPPN?°2° project

The EPPN?°?° project aims at providing public and private European plant scientists access to
a wide range of state-of-the-art plant phenotyping facilities, techniques and methods. It will
help the plant community in progressing towards excellence across the whole phenotyping
pipeline that includes sensor and imaging techniques, data analysis adjusting treatment
contrasts for environmental conditions and placing interpretation in a biological context, data
organization and storage, and analysis of series of experiments as well as meta-analyses of
experiments.
EPPN?2%20 coordinates its activities with the future infrastructure EMPHASIS, listed in the ESFRI
roadmap, and with national programs. EPPN2°?° involves:

- access to 31 key installations in 15 infrastructures,

- a Work Package on sensors (WP1),

- a Work Package on data analysis (WP2),

- a Work Package about data management (WP3),

- networking activities for establishing cooperation and increasing integration between

facilities both within and outside EPPN%°20,

1.2. Scope and aim of the document

We have introduced a conceptual classification of new phenotyping traits and defined the steps
required to integrate them into genotype-to-phenotype (G2P) models (van Eeuwijk et al.,
2019). Phenotypic information is classified into five classes, see Figure 1. At the lowest level,
level 1, data are collected by phenotyping devices, e.g. images and spectra. The raw
phenotyping data need to be converted into interpretable plant features before any statistical
analysis can be applied. Machine learning techniques, including deep learning, are used to
convert the raw phenotyping information from images and spectra into plant features. Besides,
indices can be used to compress the information from spectra into a limited number of features.
In JRA2, we concentrate on statistical procedures for analyzing phenotyping data after the
stage of feature extraction.

Extracted plant or experimental-unit specific features form the data at level 2 of our data
hierarchy, level 2 phenotypes. These features typically are measured (extracted) multiple times
over the course of a phenotyping experiment and therefore provide a time series. In this
document, we present methodology to correct the level 2 data (extracted features) for spatial
heterogeneity and subsequently fit a statistical model to the corrected level 2 phenotypic data
as a function of time. From this analysis, curve characteristics are saved that represent level 3
phenotypic data. Level 3 phenotypes can be means, intercepts, slopes, accelerations,
inflection points, maxima, minima, asymptotes, and more that describe the time dependence
at a plant level of an extracted feature, level 2 phenotype, that was spatially adjusted.

The level 3 phenotypic traits, mainly dynamical parameters of extracted plant features, are
further modelled in relation to environmental conditions. These conditions can be qualitative,
like stress versus non-stress across multiple experiments in time and space. But, the
environmental conditions can also be quantitative and collected with sensors. The estimation
of the dependence of dynamical plant traits on environmental conditions produces level 4
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phenotypic traits: rates of change of dynamic plant traits in relation to environmental conditions.
The presentation of analysis methods for level 3 traits and the estimation of level 4 phenotypic
traits is another part of D2.3.

After the estimation of level 4 traits, we can model complex target traits, i.e., traits with an
elaborate and complex genetic architecture and environmental dependencies as functions of
multiple level 4 traits and environmental inputs. Complex traits represent level 5 traits.
Prediction models for level 5 traits can be regression type of models with as inputs multiple
level 4 traits and environmental characterizations. Level 5 traits can also be modelled in
network types of models with directed edges. Models for level 5 traits form the content of D2.6
and will not be discussed here.

For D2.3, we present here methods and software to model level 2 phenotypes, traits obtained
after feature extraction. We propose a two-stage modelling approach. The first stage consists
of fitting a spatial model for the level 2 phenotypic data at each time point. The level 2
phenotypic data is “corrected” by subtracting estimates for spatial variation and variation due
to statistical design factors (blocks, rows, columns). This strategy allows one to keep the data
resolution at the plant or experimental plot level, making analyses simpler. In the second stage,
the corrected phenotype is modelled in relation to time, where level 3 phenotypes, i.e., curve
parameters and characteristics are estimated. Finally, we present classical multi-environment
analysis methods for analysing the curve characteristics across environmental conditions.

Modelling steps
Model

i Choosing the experimental
Size of gdesi np dependence
input data g of output

Figure 1. Modelling steps that convert raw
phenotyping data, level 1 phenotypes, into
model dependent predictions.
Dimensionality of input data decrease
because data are replaced by integrative

Feature extraction

Correcting for design factors
and spatial trends

Dynamical modelling T parameters that become increasingly
model dependent. D2,3 focuses on

Modelling dependence on @ -4 statistical methodology for the boxed
environmental gradients Ly, v . stages. Adapted from van Eeuwijk et al.

. - 2019.
Target trait prediction

2. A TWO-STAGE PROCEDURE FOR THE ANALYSIS OF PLATFORM
EXPERIMENTS

The statgenHTP package was developed as an easy-to-use package for analysing level 2
phenotypic data coming from high throughput phenotyping (HTP) platform experiments. It was
developed within the EPPN2°?° project to meet the needs for automated analyses of HTP data.
It provides many options for (1) checking and visualising the level 2 data and (2) model the
spatial trend with two engines (SpATS and ASReml-r). The dynamical modelling is available
in the R package mgcv (Wood et al., 2017).

This document presents an example of a two-stage analysis with these tools. The example
presented here contains data from an experiment on the Phenovator platform (WUR,
Netherlands, (Flood et al., 2016) Fig.2A) with Arabidopsis plants. It consists of one experiment
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with 1440 plants grown in a growth chamber. The number of tested genotypes is 192 with 6-7
plant replications per genotype. Four reference genotypes were also tested with 15 or 30
replications. The studied trait is the photosystem Il efficiency (“Effpsll”) extracted from images
over time (van Rooijen et al., 2017). Two light intensities were applied: low light in the beginning
of the experiment, followed by a period of high light and back to low light until the end of the
experiment (Fig.2B). The dataset called PhenovatorDatl is included in the package and is
also used in a tutorial sent to the consortium.

Low High Low
A B light light . light

0.7-W /‘F‘*‘

0.6
0.5
0.4
0.3
0.2

EffPSII

T T : T T
0 5 10 15
Time

Figure 2. Picture of the Phenovator platform (A) and level 2 phenotype (photosystem Il efficiency) for one
genotype with multiple plants and an indication of three different light intensity periods (B).

2.1. Data inspection and formatting

The statgenHTP package provides graphs that help exploring the level 2 phenotypic data. The
layout of the experiment can be plotted (Fig.3A) to verify the experimental design and define
possible statistical models for fitting. Correlations between observations made at pairs of time
points can be visualised by a heat plot (Fig.3B). Time series data can be visualised for the
individual plants for a selection of genotypes (Fig.3C). WP2 has also developed a procedure
for outlier detection in level 2 phenotypic data (deliverable D2.2, with a tutorial sent to the
consortium).

. Eurcpean
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Figure 3. Data exploration using the statgenHTP package. A, plot of the layout of the experiment at one time point
with the check genotypes highlighted in colour and the replicates boxed by black lines. B, heatmap of the
correlations between time points. C, time courses for plants belonging to a genotype for four genotypes with different
colours for the plants.

2.2. Correcting for experimental design factors and spatial variation

Methods to correct for spatial trends in field trials are equally effective for the correction of
spatial trends in platform data. In particular, the SpATS model (Rodriguez-Alvarez et al., 2018)
was used on many platform data sets (Fig.4) provided by project partners and has been proven
useful: it can be used in an automatic fashion and it is simple to use (i.e. no need for advanced
statistical knowledge).

A — Raw phenotypic data

B — Fitted spatial trend

Figure 4. Observed (A) and corrected data (B).
Adjustments are made for factors related to
experimental design and for spatial variation for
each time point using the SpATS model as
described in (van Eeuwijk et al., 2019). Data
coming from the Phenovator experiment,
PhenovatorDat1.

After the first checks, the statgenHTP program enables modelling for spatial trends using
SpATS or ASReml-r (Butler et al., 2017). The PhenovatorDatl was modelled using SpATS
with row and column effects as well as the spatial term for each time point:

. j Eurcpean
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y=pu+ Z,Co+ fiuv)+ Z,C.+ ZCo + ¢ (2)

where y is the vector of raw data at one time point, C, denotes the fixed effect associated with
the genotypes, f;(>,) is a smooth bivariate surface defined over the row and column positions
u and v, C, and C, are, respectively, the random effects associated with the rows and columns
and ¢ is the residual (¢ ~ N(0,02)). Several plots are available to investigate the spatial
patterns (Fig.5 A, B) and to assess genotypic variability (Fig.5 C, D).
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Figure 5. Diagnostic plots available in the statgenHTP R package. A, plot of the spatial trend at one time point.
This is inspired by the output of SpATS with heatmaps of the level 2 data, the independent residual and the fitted
spatial pattern, together with the genotypic values (here, Best Linear Unbiased Predictors, BLUPS). B, evolution of
the effective dimensions of each spatial component over time. C, generalized heritability estimated at each time
point. D, variance components estimated at each time point.

In the SpATS approach, we estimate the effective dimensions (ED) of each spatial component
at each time point (Fig.5B) (see (Rodriguez-Alvarez et al., 2018) for more details). ED can be
interpreted as a measure of the complexity of the corresponding spatial component, between
0 and 1, with a value of zero indicating that the component does not contribute to the
phenotypic variability. The evolution of the fitted spatial trends over time can also be used as
a diagnostic for the quality of the phenotyping installation and this information can help to
choose better experimental designs for future phenotyping experiments.

After fitting model (1), the phenotype, y, is corrected by removing the smooth spatial trend and
the row and column effects:

y=y _ft(urv) + Zrér + Zcéc (2)
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Adjustment of phenotype for experimental design and spatial variation is done per time point.
The next step is to model the corrected phenotype (or the genotypic means) in relation to time.

2.3. Dynamic modelling of spatially adjusted secondary phenotypes

To analyse dynamic data, functional analysis is usually carried out by applying a mathematical
function able to follow the curve pattern. For well behaving time series, parametric growth
models may provide a good description, such as exponential or logistic functions to fit biomass
growth. However, many time series and functional phenotyping data sets are difficult to
describe by parametric models. The P-splines offer an attractive alternative as flexible
smoothing tool (Fig.6, Eilers et al., 2015).

(S
o

1.5

Figure 6. P-spline smoothing of 10 simulated data points with
43 cubic B-spline (from Eilers et al. 2015.
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The P-splines were fitted per plant to the corrected level 2 phenotypic data using the function
gam (generalized additive model) of the mgcv package with the REML smoothness selection
method (Fig.7A). The first derivative was calculated with the fderiv package
(https://rdrr.io/github/gavinsimpson/tsgam/man/fderiv.html). To summarize the curves, we
estimated the following parameters per plant:

- max_slope, which is the speed of recovery of the PSII, calculated from the first
derivative of the B-spline basis, during the high light period (Fig.7B,D).
- min_EffPSIl, which is the minimum photosystem Il efficiency, calculated as the
minimum value of the EffPSII fitted during the high light period (Fig.7C),
A large genotypic variability was observed for the estimated parameters (Fig.7C,D). The
extracted dynamical parameters can be analysed by simple linear mixed models to estimate
genotypic effects for the various defined dynamical parameters and test treatment differences
when required.

A — Corrected data and p-splines predicted B — First derivative
values
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Figure 7. Dynamical modelling of one plant using P-splines on the corrected data (A) and their first derivatives (B).

Data per plant are summarized by parameters extracted from the P-spline prediction (minimum values for 20
genotypes, panel C) and the first derivative (maximum values before high light for 20 genotypes, panel D).

3. ANALYSING MULTIPLE PLATFORM EXPERIMENTS

From individual phenotyping experiment analyses, like described in the previous section, we
retain genotype specific parameter estimates describing the dynamics of the curves (means,
intercepts, slopes, accelerations, minima, maxima, etc.). To analyse the dependence of these
dynamic parameters on the environmental conditions, we can perform multi-trial or muilti-
environment analyses that are common for field data to analyse genotype by environment
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interactions (GXE). Therefore, we subject our dynamical parameter to GXE analyses to learn
about the environmental sensitivity of our dynamical parameters. For example, we may want
to know whether our slopes are stable over experiments done at different times or under
increasing levels of an abiotic stress, like drought stress. An overview of methods for GxE
analysis is given in van Eeuwijk et al. (2016). These methods are available in the statgenGxE
R package. This package communicates well with the above mentioned statgenHTP package.
The two packages and supporting documents provide a powerful toolbox for analysing
individual multiple phenotyping experiments. Teaching material on how to use the packages
was tested in an EPPN2°?° sponsored course «Statistical tools for plant phenomic data
analysis» at the Mediterranean Agronomic Institute Zaragoza (Spain) in January 2020 and is
available at the EPPN2°2° intranet.

4. FINAL COMMENTS

The statistical analysis of an experiment involving multiple genotypes should separate genetic
and treatment (e.g. different irrigations) information from noise variation (environmental
variability). In this document, we described protocols and software tools developed in WP2 for
an efficient analysis of single and multiple platform experiments. Using quality software for
data analysis ensures traceability of decisions.

Beyond the analysis of single and multiple experiments, we worked on a semantic model for
the statistical analysis of datasets by linear mixed models (Cwiek-Kupczynska et al., 2020).
Such a sematic model facilitates annotation of datasets and improves their interpretation and
interoperability. Using the Statistics Ontology (STATO) to produce FAIR data summaries also
enhances experimental data publication and management.

= The tools and methods described in this document have been used in various
training courses, including one entitled «Statistical tools for plant phenomic data
analysis» at the Mediterranean Agronomic Institute Zaragoza (Spain), in January
2020. We uploaded the teaching material built for this course on the project intranet
to make it available to the EPPN?°2° consortium. It contains lectures and computer
exercises.

Acknowledgement: This document was written by Emilie Millet (WU) and Fred van Eeuwijk
(WP2 leader, WU), with contributions by Bart-Jan van Rossum (WR).

Page 12 of 15

P PR ———
g Netw
EPPN 22



EPPN2020 Deliverable D2.3

References

Butler DG, Cullis BR, Gilmour AR, Gogel BJ, and Thompson R. 2017. “ASReml|-R
Reference Manual Version 4.” https://www.vsni.co.uk/.

Cwiek-Kupczyr'\ska, H., Filipiak, K., Markiewicz, A. et al. 2020 Semantic concept schema
of the linear mixed model of experimental observations. Sci Data 7, 70.
https://doi.org/10.1038/s41597-020-0409-7

Eilers PHM, Brian D; Durban, Maria. 2015. Twenty years of P-splines. SORT-Statistics and
Operations Research Transactions 39(2): 149-186.

Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JF, Harbinson J,
Aarts MG. 2016. Phenomics for photosynthesis, growth and reflectance in Arabidopsis
thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12:
14.

Rodriguez-Alvarez MX, Boer MP, van Eeuwijk FA, Eilers PHC. 2018. Correcting for spatial
heterogeneity in plant breeding experiments with P-splines. Spatial Statistics 23: 52-
71.

Van Eeuwijk, Fred A., Daniela V. Bustos-Korts, and Marcos Malosetti. "What should
students in plant breeding know about the statistical aspects of genotypex environment
interactions?." Crop Science 56, no. 5 (2016): 2119-2140.

van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A, Malosetti
M, lwata H, Quiroz R, Kuppe C, et al. 2019. Modelling strategies for assessing and
increasing the effectiveness of new phenotyping technigues in plant breeding. Plant
Sci 282: 23-39.

van Rooijen R, Kruijer W, Boesten R, van Eeuwijk FA, Harbinson J, Aarts MGM. 2017.
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of
Arabidopsis thaliana. Nature Communications 8.

Wood SN, Pya N, Safken B. 2017. Smoothing Parameter and Model Selection for General
Smooth Models. Journal of the American Statistical Association 111(516): 1548-1563.

Glossary

ED: Effective Dimension

EPPN2%2%; European Plant Phenotyping Network - 2020
GxE : genotype by environment interactions

HTP: High Throughput Phenotyping

SpATS: Spatial Analysis of field Trials with Splines
STATO: Statistical Ontology
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Annex 1: leaflet of the course «Statistical tools for plant
phenomic data analysis»

Advanced Course

'STATISTICAL TOOLS FOR PLANT PHENOMIC
DATA ANALYSIS

E¥ Objective of the course

New high-throughpus phenotyping techniques are changing
plant sciences in general and plant breeding in particolar They
produce huge yolumes of data points through time requiring
special statistical methods to extuct meaningful information for
plant breeding purposes.

The course introduces infrastructuse needed for field and indoor
platform phenomics. Then specific experimental desipns and
corresponding mixed models will be treated in detail together

— Have acquised practical experience in applying statistical
mwhmimmmdhmn

B Ocganization

Zaragoza (Spam), 20-24 January 2020

(IAMZ), with the collaboration of the Furopean Plant
at the Mediterransan Agronomic Institote of Zaragoza and will
be given by well qualified lecturens from universities, ressarch
centres and private companies in different countries.

The course will be held aver 3 period of 1 week, from 20 to 24
January 2020, in morning end afternoan sessions.
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Applications must inclade the curriculum vitae and copy of the
wpporting documents most related to the subject of the course.
The deadline for the submission of applications is 30 October
2019. The deadline may be extended for candidates not
ing 2 visa and not applying for a grant if there are fres

The course is organized by the Imternational Centre for
Advanced Mediterranean Agronomic Studies (CIHEAM),
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Registration fees for the coune amount to 500 euro. This sum

B scholarships

Candidates from CIHFAM member countries (Albania, Algena,
Egypt. France, Greece, ltaly, lebanoa, Malta, Momcco,
Portugal, Spain, Tanisia and Tarkey) may apply for scholarships
Candidates from other coantries who require financial support
should spply directly to uther mational or international
mstitutions.

Elmwna

It s compulsory for participants to have medical inmurance valid
for Spain. Proof of inmirance cover must be given at the
beginning of the course. Thase who so wish may panicipate in
a collective insurance policy taken out by the IAMZ, upon
payment of the stipulated sum.

Tudlhmﬂlﬂbn

The course requires personal work and interuction smong
participants and with lecturers. The internatineal characteristics
of the course favour the exchange of experiences and points of
view.

The coune will be taught through 2 combination of lectures,
case studies and supervised computer practicals.

B Programme

1. Prediction, Prescription, Predsion and Plant Phenotyping
(1 boar lecture)
2 Introduction to phesomics (2 hours lectures)
2:1. Indoor platforms
2.2. Fiddd phesomics induding senson and carriers
2.3. Data processing pipeline foc crop phenomica
24 The Fumopean Plant Phenotyping Network and
EMPHASIS

3. Choosing the design for fidd and platform experdments
(3 hours lectures + | hoar practicaly)
3.1, Fully neplicated experiments
3.2. Partially replicated experiments
3.3. Design of multi-envimnment trials
3.4. Practical work
4. Data collection and handling (1 hour lecture + 2 hours
practicals)
4.1. Introduction to feature extraction
4.2, Case sudy and practical work on date-time foomats and
relational data tables
5. Mised models analysis of extracted features (& hours
lectures 4+ 4 hours practicals)
5.1. Single experiment
5.2. Multiple experiment
5.3. Analyxis of time series
5.4. Case studies and practical work
5.4.1. Correcting for spatial variation and temporal
modelling

54.2. Rerandomization in platforms
6. Statistical and machine Jeamning techniques for feature
extraction (4 hours lectures 5 2 hours practicals)
6.1. Dimension reduction and custer analysis
6.2. Penalized negression, dassification and regression trees
6.3. learning
6.4. Case study and practical work on festure extraction from
hypenpectral canopy reflectance data wing indices and
multivanate analyses
7. Environmental data for modelling phenomic data (2 hoar
lectures & 2 hours practicals)
7.1. Reconfing of envirnamental varates for plant phenotyping

7.2. Construction of environmental indexes
7.3. Case study and practical work on modelling prowth and
developmental processes wsing envimnmental covariates

8. Integration of environmental, penomic and phenomic data

(4 hours lectures + 4 hours practicals)

8.1. QTL and asseciation mapping

8.2. Genomic prediction

8.3. Use of crop growth modedling

GUEST LECTURERS

J. ANDEREGG, ETH Zarich (Switzestand)

J. BETRAN, Bayer, Toulous= (France)

D. BUSTOS, Wageningen UR (The Nethertaods)

J. HARTUNG, Uniy. Hohenhetm, Stottgart (Germany)
A. HUND, ETH Zarich (Switzerland)

E MILLET, Wageningen UR (The Netherands)
H. P. PIEPHO, University of Hohenbei
Seurtgant (Germany)
L. ROTH, ETH Zarich (Switzerland)
E. VAN EEUWIIK. Wageningen UR (The Nethedands)
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