
Page 1 of 15 
 

D2.3: Statistical methods and software 
for analysis of single and multiple 

platform experiments 
Emilie Millet (WU) & Fred van Eeuwijk (WU) 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 
agreement No 731013. This publication reflects only the view of the author, and the European Commission cannot be held 
responsible for any use which may be made of the information contained therein. 

 



EPPN2020 Deliverable D2.3 

 

Page 2 of 15 

 

Document information 
 
 

EU Project N° 731013 Acronym EPPN2020 

Full Title European Plant Phenotyping Network 2020 

Project website www.eppn2020.plant-phenotyping.eu 

 
 

Deliverable N° D2.3 Title Statistical methods and software for analysis of 
single and multiple platform experiments 

Work Package N° WP2 Title Design and analysis of phenotyping experiments 
across multiple platforms, scales of plant 
organisation, traits and management conditions 

 
 

Date of delivery Contractual 30/04/2020 (Month 
36) 

Actual 17/06/2020 
(Month 38) 

Dissemination 
level  

X PU Public, fully open, e.g. web 

 CO Confidential, restricted under conditions set out in Model 
Grant Agreement 

 CI Classified, information as referred to in Commission 
Decision 2001/844/EC. 

 
 

Authors 
(Partner) 

WU 

Responsible 
Author 

Name Fred van Eeuwijk Email fred.vaneeuwijk@wur.nl 

 
 

Version log 

Issue Date Revision N° Author Change 

29/04/2020 0 Emilie Millet first version 

30/04/2020 1 Fred van Eeuwijk first review by WP leader 

05/05/2020 2 Emilie Millet second version 

08/05/2020 3 Fred van Eeuwijk second review by WP leader 

18/05/2020 4 Cloé Paul-Victor Reviewed by project manager 

15/06/2020 5 François Tardieu Reviewed by Coordinator 

16/06/2020 6 Emilie Millet Final version 

 

 

mailto:fred.vaneeuwijk@wur.nl


EPPN2020 Deliverable D2.3 

 

Page 3 of 15 

 

Executive Summary 

Objectives: Develop a user-friendly statistical toolbox to analyse single and multiple 

phenotyping experiments. Provide instructions for the use of particular statistical models and 

techniques as well as make available suitable and reliable software. 

Rationale: We developed a classification of phenotyping data that help define appropriate 

statistical analyses techniques and software. A pipeline starts with unorganised data as 

occurring in images and spectra collected by phenotyping devices and ends at predictions of 

complex traits with genotype by environment interactions.  

The statistical methodology is based on linear mixed models and spline technology. A first step 

in the analysis of time series at plant level is spatial adjustment for individual time points. For 

this purpose, two-dimensional spline technology is used. The next step consists in fitting spline 

functions for dynamical trait behaviour at plant level to the spatially adjusted data. From the 

splines, data summaries describing the dynamics of the fitted curves are extracted as means, 

slopes, accelerations, minima, maxima, etc. These dynamic parameters are subsequently 

used as response in mixed models for estimating genotypic effects and heritability. When 

multiple experiments are performed with a common genotypic panel across different 

environmental conditions, statistical analysis methods for genotype by environment interaction 

are suitable for analysing the environment dependence of the dynamic parameters. 

Main Results: Statistical methods, software, protocols and teaching material for the analysis 

of single and multiple phenotyping experiments. The R procedure statgenHTP corrects time 

series data as obtained at phenotyping platforms for spatial trends and estimates genotype 

and plant specific dynamics’ parameters. Environmental dependence of these dynamical 

parameters can be investigated by the R procedure statgenGxE. Descriptions of the methods, 

illustrations of use and software were tested in courses and are available at the intranet site of 

EPPN2020  

Authors/Teams involved: Emilie Millet (WU) & Fred van Eeuwijk (WU) 
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1. INTRODUCTION 

1.1. Aim of the EPPN2020 project 

The EPPN2020 project aims at providing public and private European plant scientists access to 

a wide range of state-of-the-art plant phenotyping facilities, techniques and methods. It will 

help the plant community in progressing towards excellence across the whole phenotyping 

pipeline that includes sensor and imaging techniques, data analysis adjusting treatment 

contrasts for environmental conditions and placing interpretation in a biological context, data 

organization and storage, and analysis of series of experiments as well as meta-analyses of 

experiments.  

EPPN2020 coordinates its activities with the future infrastructure EMPHASIS, listed in the ESFRI 

roadmap, and with national programs. EPPN2020 involves:  

- access to 31 key installations in 15 infrastructures, 

- a Work Package on sensors (WP1), 

- a Work Package on data analysis (WP2), 

- a Work Package about data management (WP3),  

- networking activities for establishing cooperation and increasing integration between 

facilities both within and outside EPPN2020. 

1.2. Scope and aim of the document 

We have introduced a conceptual classification of new phenotyping traits and defined the steps 

required to integrate them into genotype-to-phenotype (G2P) models (van Eeuwijk et al., 

2019). Phenotypic information is classified into five classes, see Figure 1. At the lowest level, 

level 1, data are collected by phenotyping devices, e.g. images and spectra. The raw 

phenotyping data need to be converted into interpretable plant features before any statistical 

analysis can be applied. Machine learning techniques, including deep learning, are used to 

convert the raw phenotyping information from images and spectra into plant features. Besides, 

indices can be used to compress the information from spectra into a limited number of features. 

In JRA2, we concentrate on statistical procedures for analyzing phenotyping data after the 

stage of feature extraction. 

Extracted plant or experimental-unit specific features form the data at level 2 of our data 

hierarchy, level 2 phenotypes. These features typically are measured (extracted) multiple times 

over the course of a phenotyping experiment and therefore provide a time series. In this 

document, we present methodology to correct the level 2 data (extracted features) for spatial 

heterogeneity and subsequently fit a statistical model to the corrected level 2 phenotypic data 

as a function of time. From this analysis, curve characteristics are saved that represent level 3 

phenotypic data. Level 3 phenotypes can be means, intercepts, slopes, accelerations, 

inflection points, maxima, minima, asymptotes, and more that describe the time dependence 

at a plant level of an extracted feature, level 2 phenotype, that was spatially adjusted. 

The level 3 phenotypic traits, mainly dynamical parameters of extracted plant features, are 

further modelled in relation to environmental conditions. These conditions can be qualitative, 

like stress versus non-stress across multiple experiments in time and space. But, the 

environmental conditions can also be quantitative and collected with sensors. The estimation 

of the dependence of dynamical plant traits on environmental conditions produces level 4 
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phenotypic traits: rates of change of dynamic plant traits in relation to environmental conditions. 

The presentation of analysis methods for level 3 traits and the estimation of level 4 phenotypic 

traits is another part of D2.3. 

After the estimation of level 4 traits, we can model complex target traits, i.e., traits with an 

elaborate and complex genetic architecture and environmental dependencies as functions of 

multiple level 4 traits and environmental inputs. Complex traits represent level 5 traits. 

Prediction models for level 5 traits can be regression type of models with as inputs multiple 

level 4 traits and environmental characterizations. Level 5 traits can also be modelled in 

network types of models with directed edges. Models for level 5 traits form the content of D2.6 

and will not be discussed here. 

For D2.3, we present here methods and software to model level 2 phenotypes, traits obtained 

after feature extraction. We propose a two-stage modelling approach. The first stage consists 

of fitting a spatial model for the level 2 phenotypic data at each time point. The level 2 

phenotypic data is “corrected” by subtracting estimates for spatial variation and variation due 

to statistical design factors (blocks, rows, columns). This strategy allows one to keep the data 

resolution at the plant or experimental plot level, making analyses simpler. In the second stage, 

the corrected phenotype is modelled in relation to time, where level 3 phenotypes, i.e., curve 

parameters and characteristics are estimated. Finally, we present classical multi-environment 

analysis methods for analysing the curve characteristics across environmental conditions.  

 

 

 

Figure 1. Modelling steps that convert raw 

phenotyping data, level 1 phenotypes, into 
model dependent predictions. 
Dimensionality  of input data decrease 
because data are replaced by integrative 
parameters that become increasingly 
model dependent. D2,3 focuses on 
statistical methodology for the boxed 
stages. Adapted from van Eeuwijk et al. 
2019. 

 

2. A TWO-STAGE PROCEDURE FOR THE ANALYSIS OF PLATFORM 

EXPERIMENTS 

The statgenHTP package was developed as an easy-to-use package for analysing level 2 

phenotypic data coming from high throughput phenotyping (HTP) platform experiments. It was 

developed within the EPPN2020 project to meet the needs for automated analyses of HTP data. 

It provides many options for (1) checking and visualising the level 2 data and (2) model the 

spatial trend with two engines (SpATS and ASReml-r). The dynamical modelling is available 

in the R package mgcv (Wood et al., 2017). 

This document presents an example of a two-stage analysis with these tools. The example 

presented here contains data from an experiment on the Phenovator platform (WUR, 

Netherlands, (Flood et al., 2016) Fig.2A) with Arabidopsis plants. It consists of one experiment 
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with 1440 plants grown in a growth chamber. The number of tested genotypes is 192 with 6-7 

plant replications per genotype. Four reference genotypes were also tested with 15 or 30 

replications. The studied trait is the photosystem II efficiency (“EffpsII”) extracted from images 

over time (van Rooijen et al., 2017). Two light intensities were applied: low light in the beginning 

of the experiment, followed by a period of high light and back to low light until the end of the 

experiment (Fig.2B). The dataset called PhenovatorDat1 is included in the package and is 

also used in a tutorial sent to the consortium. 

 
Figure 2. Picture of the Phenovator platform (A) and level 2 phenotype (photosystem II efficiency) for one 

genotype with multiple plants and an indication of three different light intensity periods (B). 

2.1. Data inspection and formatting 

The statgenHTP package provides graphs that help exploring the level 2 phenotypic data. The 

layout of the experiment can be plotted (Fig.3A) to verify the experimental design and define 

possible statistical models for fitting. Correlations between observations made at pairs of time 

points can be visualised by a heat plot (Fig.3B). Time series data can be visualised for the 

individual plants for a selection of genotypes (Fig.3C). WP2 has also developed a procedure 

for outlier detection in level 2 phenotypic data (deliverable D2.2, with a tutorial sent to the 

consortium). 
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Figure 3. Data exploration using the statgenHTP package. A, plot of the layout of the experiment at one time point 

with the check genotypes highlighted in colour and the replicates boxed by black lines. B, heatmap of the 
correlations between time points. C, time courses for plants belonging to a genotype for four genotypes with different 
colours for the plants. 

2.2. Correcting for experimental design factors and spatial variation 

Methods to correct for spatial trends in field trials are equally effective for the correction of 

spatial trends in platform data. In particular, the SpATS model (Rodríguez-Álvarez et al., 2018) 

was used on many platform data sets (Fig.4) provided by project partners and has been proven 

useful: it can be used in an automatic fashion and it is simple to use (i.e. no need for advanced 

statistical knowledge). 

 

 
 

 
 
 
Figure 4. Observed (A) and corrected data (B). 

Adjustments are made for factors related to 
experimental design and for spatial variation for 
each time point using the SpATS model as 
described in (van Eeuwijk et al., 2019). Data 
coming from the Phenovator experiment, 
PhenovatorDat1. 

 

After the first checks, the statgenHTP program enables modelling for spatial trends using 

SpATS or ASReml-r (Butler et al., 2017). The PhenovatorDat1 was modelled using SpATS 

with row and column effects as well as the spatial term for each time point: 
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𝑦 =  𝜇 + 𝑍𝑔𝐶𝑔 +  𝑓𝑡(𝑢, 𝑣) +  𝑍𝑟𝐶𝑟 + 𝑍𝑐𝐶𝑐 +  𝜀  (1) 

where 𝑦 is the vector of raw data at one time point, 𝐶𝑔 denotes the fixed effect associated with 

the genotypes, 𝑓𝑡(∙,∙) is a smooth bivariate surface defined over the row and column positions 

𝑢 and 𝑣, 𝐶𝑟 and 𝐶𝑐 are, respectively, the random effects associated with the rows and columns 

and 𝜀 is the residual (𝜀 ~ 𝑁(0, 𝜎2)). Several plots are available to investigate the spatial 

patterns (Fig.5 A, B) and to assess genotypic variability (Fig.5 C, D).  

 

Figure 5. Diagnostic plots available in the statgenHTP R package. A, plot of the spatial trend at one time point. 

This is inspired by the output of SpATS with heatmaps of the level 2 data, the independent residual and the fitted 
spatial pattern, together with the genotypic values (here, Best Linear Unbiased Predictors, BLUPs). B, evolution of 
the effective dimensions of each spatial component over time. C, generalized heritability estimated at each time 
point. D, variance components estimated at each time point. 

In the SpATS approach, we estimate the effective dimensions (ED) of each spatial component 

at each time point (Fig.5B) (see (Rodríguez-Álvarez et al., 2018) for more details). ED can be 

interpreted as a measure of the complexity of the corresponding spatial component, between 

0 and 1, with a value of zero indicating that the component does not contribute to the 

phenotypic variability. The evolution of the fitted spatial trends over time can also be used as 

a diagnostic for the quality of the phenotyping installation and this information can help to 

choose better experimental designs for future phenotyping experiments. 

After fitting model (1), the phenotype, 𝑦, is corrected by removing the smooth spatial trend and 

the row and column effects: 

ỹ = 𝑦 − 𝑓𝑡(𝑢, 𝑣) + 𝑍𝑟Ĉ𝑟 + 𝑍𝑐Ĉ𝑐 (2) 
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Adjustment of phenotype for experimental design and spatial variation is done per time point. 

The next step is to model the corrected phenotype (or the genotypic means) in relation to time.  

2.3. Dynamic modelling of spatially adjusted secondary phenotypes 

To analyse dynamic data, functional analysis is usually carried out by applying a mathematical 

function able to follow the curve pattern. For well behaving time series, parametric growth 

models may provide a good description, such as exponential or logistic functions to fit biomass 

growth. However, many time series and functional phenotyping data sets are difficult to 

describe by parametric models. The P-splines offer an attractive alternative as flexible 

smoothing tool (Fig.6, Eilers et al., 2015).  

 

 

 

 

Figure 6. P-spline smoothing of 10 simulated data points with 

43 cubic B-spline (from Eilers et al. 2015. 
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The P-splines were fitted per plant to the corrected level 2 phenotypic data using the function 

gam (generalized additive model) of the mgcv package with the REML smoothness selection 

method (Fig.7A). The first derivative was calculated with the fderiv package 

(https://rdrr.io/github/gavinsimpson/tsgam/man/fderiv.html). To summarize the curves, we 

estimated the following parameters per plant:  

- max_slope, which is the speed of recovery of the PSII, calculated from the first 

derivative of the B-spline basis, during the high light period (Fig.7B,D). 

- min_EffPSII, which is the minimum photosystem II efficiency, calculated as the 

minimum value of the EffPSII fitted during the high light period (Fig.7C), 

A large genotypic variability was observed for the estimated parameters (Fig.7C,D). The 

extracted dynamical parameters can be analysed by simple linear mixed models to estimate 

genotypic effects for the various defined dynamical parameters and test treatment differences 

when required.  

 

Figure 7. Dynamical modelling of one plant using P-splines on the corrected data (A) and their first derivatives (B). 

Data per plant are summarized by parameters extracted from the P-spline prediction (minimum values for 20 
genotypes, panel C) and the first derivative (maximum values before high light for 20 genotypes, panel D). 
 

3. ANALYSING MULTIPLE PLATFORM EXPERIMENTS 

From individual phenotyping experiment analyses, like described in the previous section, we 

retain genotype specific parameter estimates describing the dynamics of the curves (means, 

intercepts, slopes, accelerations, minima, maxima, etc.). To analyse the dependence of these 

dynamic parameters on the environmental conditions, we can perform multi-trial or multi-

environment analyses that are common for field data to analyse genotype by environment 

https://rdrr.io/github/gavinsimpson/tsgam/man/fderiv.html
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interactions (G×E). Therefore, we subject our dynamical parameter to G×E analyses to learn 

about the environmental sensitivity of our dynamical parameters. For example, we may want 

to know whether our slopes are stable over experiments done at different times or under 

increasing levels of an abiotic stress, like drought stress. An overview of methods for G×E 

analysis is given in van Eeuwijk et al. (2016). These methods are available in the statgenGxE 

R package. This package communicates well with the above mentioned statgenHTP package. 

The two packages and supporting documents provide a powerful toolbox for analysing 

individual multiple phenotyping experiments. Teaching material on how to use the packages 

was tested in an EPPN2020 sponsored course «Statistical tools for plant phenomic data 

analysis» at the Mediterranean Agronomic Institute Zaragoza (Spain) in January 2020 and is 

available at the EPPN2020 intranet. 

 

4. FINAL COMMENTS 
 

The statistical analysis of an experiment involving multiple genotypes should separate genetic 

and treatment (e.g. different irrigations) information from noise variation (environmental 

variability). In this document, we described protocols and software tools developed in WP2 for 

an efficient analysis of single and multiple platform experiments. Using quality software for 

data analysis ensures traceability of decisions.  

 

Beyond the analysis of single and multiple experiments, we worked on a semantic model for 

the statistical analysis of datasets by linear mixed models (Ćwiek-Kupczyńska et al., 2020). 

Such a sematic model facilitates annotation of datasets and improves their interpretation and 

interoperability. Using the Statistics Ontology (STATO) to produce FAIR data summaries also 

enhances experimental data publication and management.  

 

 The tools and methods described in this document have been used in various 
training courses, including one entitled «Statistical tools for plant phenomic data 
analysis» at the Mediterranean Agronomic Institute Zaragoza (Spain), in January 
2020. We uploaded the teaching material built for this course on the project intranet 
to make it available to the EPPN2020 consortium. It contains lectures and computer 
exercises. 
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Glossary 
 
ED: Effective Dimension 

EPPN2020: European Plant Phenotyping Network - 2020 

G×E : genotype by environment interactions 

HTP: High Throughput Phenotyping 

SpATS: Spatial Analysis of field Trials with Splines 

STATO: Statistical Ontology 
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Annex 1: leaflet of the course «Statistical tools for plant 
phenomic data analysis» 
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